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Preface

When it comes to understanding the why’s and wherefores of climate, there is an infinite amount
one needs to know, but life affords only a finite time in which to learn it; the time available before
one’s fellowship runs out and a PhD thesis must be produced affords still less. Inevitably, the
student who wishes to get launched on significant interdisciplinary problems must begin with a
somewhat hazy sketch of the relevant physics, and fill in the gaps as time goes on. It is a lifelong
process. This book is an attempt to provide the student with a sturdy scaffolding upon which a
deeper understanding may be hung later.

The climate system is made up of building blocks which in themselves are based on el-
ementary physical principles, but which have surprising and profound collective behavior when
allowed to interact on the planetary scale. In this sense, the ”climate game” is rather like the game
of Go, where interesting structure emerges from the interaction of simple rules on a big playing
field, rather than complexity in the rules themselves. This book is intended to provide a rapid
entrée into this fascinating universe of problems for the student who is already somewhat literate
in physics and mathematics, but who has not had any previous experience with climate problems.
The subject matter of each individual chapter could easily fill a textbook many times over, but
even the abbreviated treatment given here provides enough core material for the student to begin
treating original questions in the physics of climate.

This is a somewhat Earth-centric book, in that the Earth provides our best-observed example
of a planetary climate. Nonetheless, the central organizing principle is the manner in which the
interplay of the same basic set of physical building-blocks gives rise to the diverse climates of
present, past and future Earth, of the other planets in the Solar system, and of hypothetical
planets yet to be discovered.

In this book I have chosen to deal only with aspects of climate that can be treated without
consideration of the fluid dynamics of the Atmosphere or Ocean. Many successful scientists have
spent their entire careers productively in this sphere. A sequel will treat the additional phenomena
that emerge when fluid dynamics is introduced, culminating in a do-it-yourself General Circulation
Model.

The short exercises embedded in the text are meant to be done ”on the spot,” as an im-
mediate check of comprehension. More involved and thought-provoking problems may be found
in the accompanying Workbook section at the end of each chapter. The Workbook provides an
integral part of the course. Using the techniques and tools developed in the Workbook sections, the
student will be able to reproduce every single computational and data analysis result included in
the text. The Workbook also offers considerable opportunities for independent inquiry launching
off from the results shown in the text. After having completed the course, the diligent student will
be in possession of a tool kit that will be immediately useful in original research. In a modest way,
the Workbook is intended to do for climate modelling what Numerical Recipes did for numerical
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Chapter 1

The Big Questions

1.1 Overview

This chapter will survey a few of the major questions raised by observed features of present and
past Earth and planetary climate. Some of these questions have been answered to one extent or
another, but many remain largely unresolved. This will not be a comprehensive synopsis of Earth
and planetary climate evolution; we will be content to point out a few striking facts about climate
that demand a physical explanation. Then, in subsequent chapters, we’ll develop the physics
necessary to think about these problems. Although we hope not to be too Earth-centric in this
book, in the present chapter we will perforce talk at greater length about Earth’s climate than about
those of other planets, because so much more is known about Earth’s past climate than is known
about the past climates of other planets. A careful study of Earth history suggests generalities
that may apply to other planets, and also raises interesting questions about how things might have
happened differently elsewhere, and it is with this goal in mind that we begin our journey.

1.2 Close to home

When the young Carl Linneaus set off on his journey of botanical discovery to Lappland in 1732,
he left on foot from his home in Uppsala. He didn’t wait until he reached his destination to start
making observations, but found interesting things to think about all along the way, even in the
plant life at his doorstep. So it is with climate as well.

To the discerning and sufficiently curious observer, a glance out the window, a walk through
the woods or town, a short sail on the ocean, all raise profound questions about the physics
of climate. Even without a thermometer, we have a perception of ”heat” or ”temperature” by
examining the physical and chemical transitions of the matter around us. In the summertime, ice
cream will melt when left out in the sun, but steel cooking pots don’t. Trees and grass do not
spontaneously burst into flame every afternoon, and a glass of water left outdoors in the summer
does not boil. Away from the tropical regions, it often gets cold enough for water to freeze in the
wintertime, but hardly ever cold enough for alcohol to freeze. What is it that heats the Earth?
Is it really the Sun, as seems intuitive from the perception of warmth on a sunny day? In that
case, what keeps the Earth from just accumulating more and more energy from the Sun each day,
heating up until it melts? For that matter, why don’t temperatures plummet to frigid wintery

3



4 CHAPTER 1. THE BIG QUESTIONS

values every night when the Sun goes down? Similarly, what limits how cold it gets during the
winter?

With the aid of a thermometer, such questions can be expressed quantitatively. The first, and
still most familiar, kinds of thermometers were based on on particular reproducible and measurable
effect of temperature on matter – the expansion of matter as it heats up. Because living things are
composed largely of liquid water, the states of water provide a natural reference on which to build
a temperature scale. The Celsius temperature scale divides the range of temperature between the
freezing point of pure water and the boiling point at sea level into 100 equal steps, with zero being
at the freezing point and 100C at the boiling point 1.

Through observations of fire and forge, even the ancients were aware that conditions could be
much hotter than the range of temperatures experienced in the normal course of climate. However,
they could have had no real awareness of how much colder things could get. That had to await
the theoretical insights provided by the development of thermodynamics in the nineteenth century,
followed by the invention of the refrigeration by Carl von Linde not long afterwards. By the close of
the century, temperatures low enough to liquify air had been achieved. This was still not as low as
temperatures could go. The theoretical and experimental developments of the nineteenth century
consolidated earlier speculations that there is an absolute zero of temperature, at which random
molecular motions cease and the volume of an ideal gas would collapse to zero; no temperature
could go below this absolute zero. On the Celsius scale, absolute zero occurs at −273.15C. Most
of thermodynamics and radiation physics can be expressed more cleanly if temperatures are given
relative to absolute zero, which led to the formulation of the Kelvin temperature scale, which shifts
the zero of the scale while keeping the size of the degrees the same as on the Celsius scale. On
the Kelvin scale, absolute zero is at zero degrees, the freezing point of water is at 273.15K, and
the sea-level boiling point of water is at 373.15K. Viewed on the Kelvin scale, the temperature
range of Earth’s climate seems quite impressively narrow. It amounts to approximately a ±10%
variation about a typical temperature of 285K. A 20% variation in the Earth’s temperature (as
viewed on the Kelvin scale) would be quite catastrophic for life as we know it. This remark can
be encapsulated in a saying: ”Physics may work in degrees Kelvin, but Earth life works in degrees
Celsius,”

There is more to climate than temperature. Climate is also characterized by the amount
and distribution of precipitation (rainfall and snowfall), as well as patterns of atmospheric winds
and oceanic currents. However, temperature will do for starters. In this book we will discuss
temperature at considerable length, and venture to a somewhat lesser degree into the factors
governing the amount of precipitation. We will not say much about wind patterns, though some
of their effects on the temperature distribution will be discussed in Chapter 10.

If you live outside the tropical zone, you will come to wonder why it is hotter in summer
than in winter, and why the summer/winter temperature range has the value that it does (e.g.
30C in Chicago) and why the variation is generally lower over the oceans (e.g. 7C in the middle of
the Pacific Ocean, at the same latitude as Chicago). If you communicate with friends living in the
Arctic or Antarctic regions, and other friends living near the Equator, you will begin to wonder
why, on average, it is warmer near the Equator than in the polar regions, and why the temperature
difference has the value it does (e.g. 40C difference between the annual average around the Equator
vs. the annual average at the North Pole). The physics underlying the seasonal cycle and the pole

1The scale is named for the Swedish astronomer Anders Celsius, who originally formulated a similar temperature
scale in 1742. Celsius’ scale was reversed relative to the modern one, putting 100 at the freezing point and zero at the
boiling point. The Celsius scale is sometimes called centigrade, but Celsius is considered to be the preferred term.
The official definition of the temperature scale is now based on standards that are more precise and unambiguous
than the freezing and boiling point of water.
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to equator temperature gradient is discussed in Chapters 8 and 10. If you climb a mountain (or
even observe the snow-capped peaks of a mountain from the valley floor on a hot summer day), or
if you go up in a hot-air balloon, or fly in an airliner which informs you of the outdoor temperature
– you will notice that the air gets colder as one goes higher in altitude? Why should this be? This
turns out to be a general feature of planetary atmospheres, and the basic physics underlying the
phenomenon is discussed in Chapter 2.

The air that surrounds us is itself a matter of interest. We know that it is there because
it has a temperature, exerts pressure, and because it is necessary that we breathe it in order to
remain alive. But what is the air made of, and why does it have the composition it does? We
can see water condense out of the air, but why don’t other components condense in the course of
natural weather and climate variations? How much air is there? And has it always been there
with its present composition, or has it changed over time? If so, how much and how quickly?

We know that our planet journeys through the hard vacuum of outer space, clothed in a thin
blanket of air – our atmosphere. It is natural to wonder how our atmosphere affects the Earth’s
climate. The airless moon shares the same orbit of the Earth, at the same distance from the Sun,
so one can look to the Moon to get an idea of what the Earth’s climate would be like if it had
no atmosphere. We know the moon is airless because a reasonably thick atmosphere would bend
the light rays from the Sun and stars, just as objects appear displaced when viewed through the
surface of a swimming pool. But how to measure its temperature?

Of course, one could go there with a thermometer (and this did eventually happen) but
people became curious about Lunar conditions long before it seemed likely that anybody would
ever get there. Dante Alighieri himself, in the Paridiso written between 1308 and 1321, devoted
fully one hundred cantos to a learned discussion between himself and Beatrice concerning the
source of Lunar light and the solidity of the Lunar surface. By the mid nineteenth century, science
had progressed to the point that the questions could be formulated more sharply, and the means
for an answer had begun to emerge. With the discovery of infrared light by Sir William Herschel in
1800, astronomy opened a new window into the properties of planets and stars. Over the coming
decades, it gradually became clear that all bodies emit radiation according to their temperature.
This is known as blackbody radiation and will discussed in detail in Chapter 3. Infrared light from
the Moon was detected by Charles Piazzi Smyth in 1856, and the first attempt to use it to estimate
temperature was by the Fourth Earle of Rosse in 1870. The instruments available at the time were
not up to the task. In 1878, Langley invented the bolometer, which made good observations of
Lunar infrared possible. However, while Langley made the first accurate observations of Lunar
infrared, theory was not quite up to the task of interpreting the observations. These issues were
largely sorted out by 1913, though Langley gave up on his earlier estimates rather reluctantly. By
1913 it was pretty clear that the daytime temperature of the Moon at the point where the Sun is
directly overhead is well in excess of 373K (the sea-level temperature of boiling water on Earth).
Night-time temperatures were harder to determine accurately, since the infrared emission from
cold objects is weak; however it was clear that temperatures at night dropped by well over 140K
relative to the daytime peak. Pettit and Nicholson observed the temperature of the Moon during
the Lunar eclipse of 1927, using the Mt. Wilson telescope. They found something even more
remarkable: over the span of the few hours of the eclipse, the Lunar temperature fell from 342K
at the point of observation to 175K. Modern measurements show the daily average temperature
at the Lunar equator to be around 220K, while the mean temperature at 85N latitude is 130K

It appears that without an atmosphere or ocean, the Earth would be subject to extreme
swings of temperature between day and night. The Moon’s ”day” is 28 Earth days, since it always
shows the same face to the Earth; on that basis, one could imagine that the day/night extremes
were due to a longer night offering more time to cool down, but the rapid cooling during an eclipse
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gives the lie to this idea. Given the rapid cooling of an airless body at night, it is likely that the
Earth’s summer/winter temperature difference would be far more extreme in the absence of an
atmosphere. Further, a comparison of the pole to equator gradient in daily mean temperature
with that on Earth suggests that the atmosphere significantly moderates this gradient, too. What
is it about the atmosphere or ocean that damps down day/night or summer/winter swings in
temperature? This subject will be taken up in Chapter 8, where we’ll also learn why summer is
warmer than winter and why the poles are on the average colder than the Equator. How does an
atmosphere or ocean moderate the temperature difference between pole and equator? We’ll learn
something of that in Chapter 10.

At its hottest the Moon gets much hotter than Earth, and at its coldest it gets much
colder. But how does the Moon’s mean temperature stack up against that of Earth? The 220K
mean equatorial temperature of the Moon is very much colder than the observed mean tropical
temperature on Earth, which is on the order of 300K. If the Earth’s mean temperature were as
low as that of the Moon, the oceans would be solidly frozen over. The cold mean temperature of
the Moon does not come about because the Moon reflects more sunlight than the Earth; the Moon
looks silvery but measurements show that it actually reflects less than Earth. Why is the Earth, on
average, so much warmer than the Moon? Does this have something to do with our atmosphere,
or is it the case that Earth is warmed by some internal heat source that the Moon lacks?

The search for the first stirrings of an answer to this problem takes us back to 1827, when
Fourier published his seminal treatise on the temperature of the Earth. Fourier could not have
known anything about the temperature of the Moon, but he did know a great deal about heat
transfer – having in fact largely invented the subject. Using his new theory of heat conduction in
solids, Fourier analyzed data on the rate at which average temperature increases as one descends
deeper below the Earth’s surface ; he also analyzed the attenuation of day/night or summer/winter
temperature fluctuations with depth. (Fourier’s solution for the latter problem will be derived in
Chapter 8.) Based on these analyses, Fourier concluded that the flow of heat outward from the
interior of the Earth was utterly insignificant in comparison to the heat received from the Sun.
We’ll see shortly that this situation applies to other rocky planets as well: dry rock is a good
insulator, and doesn’t let internal heat out very easily.

If the Earth is continually absorbing solar energy, it must also have some way of getting
rid of it. Otherwise the energy would have accumulated over the past eons, leading to a molten,
incandescent uninhabitable planet (see Problem ??) – which is manifestly not the case. Fourier
seems to have known that there was little or no matter in the space through which planets plied
their orbits, and so he posited that planets lose heat almost exclusively through emission of infrared
radiation (called ”dark heat” at the time). 2 He also knew that the rate of emission of ”dark
heat” increased with temperature, which provided a means for an equilibrium temperature to be
achieved: a planet would simply heat up until it radiated infrared energy at the same rate as it
received energy from the Sun. Finally, Fourier refers to experiments showing that something in the
atmosphere emits infrared radiation downward toward the ground, and seems to have been aware
also of the fact that something in the atmosphere absorbs infrared. Based on these somewhat
sketchy observations, Fourier inferred that the Earth’s atmosphere retards the emission of infrared
to space, allowing it to be warmer than it would be if it were airless.

Fourier’s treatise made it clear the the thermal emission of infrared light was not just useful
for astronomical observations – it was in fact part and parcel of the operation of planetary climate.

2Fourier also refers to the importance of heating from what he calls the ”temperature of space.” It is unclear
whether he thought there was some substance in space that could conduct heat to the atmosphere, or whether he
was referring to some invisible radiation which pervades space. His inferences regarding the importance of this factor
were erroneous – the only real error in an otherwise remarkable paper.
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At Fourier’s time the state of understanding of infrared radiation emission was not sufficiently de-
veloped as to allow him to complete the calculation he set up. Nonetheless, he correctly formulated
the problem of terrestrial temperature as one of achieving a balance between the rate at which
solar radiation is absorbed and the rate at which infrared is emitted. With this great insight, the
modern era of study of planetary temperature had begun. Fleshing out the ”details,” however,
required major advances in several areas of fundamental physics. The basic principles of planetary
energy balance, and of the manner in which an atmosphere increases planetary temperature, are
introduced in Chapter 3 and elaborated on in the earlier parts of Chapter 4.

One of the many details that needed to be settled was the question of which components
of the atmosphere affected the transmission of infrared radiation. In 1859 Tyndall found that
the dominant components of the Earth’s atmosphere – nitrogen and oxygen – are very nearly
transparent to infrared radiation. He found instead that it was two relatively minor constituents
– water vapor and CO2 – which accounted for most of the infrared absorption and emission by
Earth’s air. Gases of this sort, which let solar energy through virtually unimpeded but strongly
retard the outward loss of infrared radiation, are known as ”greenhouse gases.” Their warming
effect on the lower portions of a planet’s atmosphere, and on its surface (if it has one) is called
the ”greenhouse effect.” The term was not coined by Fourier, and in some ways is misleading,
since real greenhouses do not work by blocking infrared emission. However, the glass or plastic
enclosure of a real greenhouse does warm the interior by reducing heat loss to the environment
while allowing solar heating, and in that sense – viewed as a broader metaphor for the implications
of energy balance – the analogy is apt. Besides CO2 and water vapor, we now know of a number of
additional greenhouse gases, including CH4 (methane), which may have played a very important
role on the Early Earth, and plays some role even today. In fact, it turns out that in some very
dense atmospheres such as that of Titan, even nitrogen can become a greenhouse gas. What
determines whether a molecule is or is not a good greenhouse gas, and how do we characterize the
effects of individual gases, and thus the influence of atmospheric composition on climate? These
questions will be taken up in the latter half of Chapter 4.

In thinking about the effect of greenhouse gases on climate, it is important to distinguish
between long-lived greenhouse gases which are removed slowly from the atmosphere on a time
scale of thousands of years or more, and short-lived greenhouse gases which are removed on a time
scale of weeks to years by condensation or rapid chemical reactions. The short-lived greenhouse
gases act primarily as a feedback mechanism. Their concentration adjusts rapidly to other changes
in the climate, serving to amplify or offset climate changes caused by other factors – including
changes due to long-lived greenhouse gases. Long-lived greenhouse gases can also participate in
feedbacks, but only on time scales longer than their typical atmospheric adjustment time. Whether
a greenhouse gas is long-lived or short-lived depends on environmental conditions. On the Earth,
CO2 is a long-lived greenhouse gas but water vapor is a short-lived greenhouse gas; however, on
Mars, which gets cold enough for CO2 to condense, that gas can be considered short-lived.

Greenhouse gases are largely invisible, but the atmosphere also holds a readily visible com-
ponent that exerts a profound influence over our planet’s energy balance – the clouds. Clouds on
Earth are composed of suspended droplets of condensed water, in the form of liquid or ice. Clouds,
like water vapor, act as a short-lived greenhouse gas affecting the rate at which infrared can escape
to space. The infrared opacity of clouds is used routinely in weather satellites, since this property
makes cloud patterns visible from space even on the night side of the Earth. However, clouds affect
the other side of the energy balance as well, because cloud particles quite effectively reflect sunlight
back to space. The two competing effects of clouds are individually large, but partly offset each
other, so that small errors in one or the other term lead to large errors in the net effect of clouds
on climate. Moreover, the effect of clouds on the energy budget depends on all the intricacies
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of the physics that determine things like particle size and how much condensed water remains in
suspension. For this reason, clouds pose a very severe challenge to the understanding of climate.
This is the case not just for Earth, but for virtually any planet with an atmosphere. The physics
underlying the effects of clouds on both sides of the radiation balance will be discussed in Chapters
4 and 5

1.3 Into deepest time: Faint Young Sun and habitability of
the Earth

The Solar system was not always as we see it today. It formed from a nebula of material collapsing
under the influence of its own gravitation, and once the nebula began to collapse, things happened
very quickly. The initial stage of formation of the Solar system was complete by about 4.6 billion
years ago. By this time, the Sun had begun producing energy by thermonuclear fusion; the
formation of the outer gas giant planets and their icy moons by condensation, and the formation
of the inner planets by collision of smaller rocky planetesimals, were essentially complete. The
last major event in the formation of the Earth was collision with a Mars-sized body 4.5 billion
years ago, which formed the Moon and may have melted the Earth’s primitive crust in the process.
All these collisions left behind a great deal of heat that had to be gotten rid of before the crust
could stabilize. To determine how long it takes to get rid of this heat, we must learn about
the mechanisms by which planets lose energy, and about how the rate of energy loss depends on
temperature and atmospheric composition; this will happen in Chapters 3 and 4. It turns out
that a planet loses energy almost exclusively by radiation of infrared light to space. While the
precise rate of loss depends on the nature of the atmosphere, all estimates show that the surface
of the Earth quickly cools to 2000K, at which point molten rock solidifies; in the absence of an
atmosphere, this process takes a thousand years or less, while with a thick atmosphere it could
take as long as two or three million years.

Once a solid crust forms, the flow of heat from the interior of the Earth to the surface is
sharply curtailed, because heat diffuses very slowly through solid rock. In this situation, supply of
heat from the interior becomes insignificant in comparison with the energy received from the Sun,
and the Earth has settled into a state where the climate is determined by much the same processes
that determine today’s climate: a competition between the rate at which energy is received from
the Sun against the rate at which energy is lost to space by radiation of infrared light. This is
very likely to have been the case by 4.4 billion years ago, if not earlier. There are no actual rocks
as old as this, but there are individual zircon crystals embedded in the Jack Hills formation of
Western Australia which are 4.4 billion years old. Zircons of a similar age are also found within
the 3.7 billion year old crustal rocks of the neighboring Narryer Gneiss Complex. These crystals
provide indisputable evidence for the existence of at least some continental crust of a sort very like
that we see today; they also provide convincing though less certain evidence of the existence of
liquid water in contact with the early continental crust. The existence of liquid water does not in
itself put much constraint on temperature, since water can be maintained in a liquid state even at
temperatures in excess of 500 degrees Kelvin, provided the pressure exerted by water vapor in the
atmosphere is high enough. The thermodynamics needed to address this issue will be introduced
in Chapter 2. Certain aspects of the chemical composition of the zircons, however, suggest that
they interacted with near-surface water having a temperature of 100C or less. By 4.4 billion years
ago, it would appear, the Earth was no longer a molten volcanic inferno.

The precise nature of the climate evolution between 4.5 and 3.8 billion years ago is obscure
at present. Depending on the composition of the atmosphere, the surface temperature could have



1.3. INTO DEEPEST TIME: FAINT YOUNG SUN AND HABITABILITY OF THE EARTH 9

been as high as 200C or low enough to cause the ocean (if any) to freeze over completely, and
the climate could well have swung wildly between the two extremes. In addition, the dates of
Lunar craters indicate that the Earth very likely underwent a period of heavy bombardment by
interplanetary debris between 4.1 and 3.8 billion years ago; it is generally supposed that this late
heavy bombardment affected the rest of the inner Solar system as well, though that is far from
certain. The energy brought in by impacts during this period could easily have been sufficient to
bring surface temperatures episodically to values well in excess of 100C, sterilizing any nascent
ecosystems. Life, if any, may have waged and won a battle for survival in deep ocean refugia.

By 3.8 billion years ago, the veil begins to lift. This is the age of the oldest intact rocks,
found today in the Isua Greenstone Belt of Greenland. The appearance of these rocks marks the
end of the Hadean eon, and the dawn of the Archaean eon. Remnants of 3.7 billion year old shales
in the Isua formation show the unmistakable signs of deposition of sediments in open water. More
intriguingly, these shales are rich in organic carbon, and this carbon preserves a chemical signature
generally associated with microbial activity – life. The Barberton formation of South Africa and
the Warrawoona formation of Australia, both about 3.5 billion years old, contain layered carbonate
sedimentary structures known as stromatolites, which in later times are known to be laid down by
microbial mats. This is not an unambiguous sign of life, since inorganic processes can also produce
stromatolite-like features. Be that as it may, the early stromatolites certainly require ponds of open
water evaporating into air. The Barberton and Warrawoona formations also contain microscopic
features that are suggestive of bacterial fossils, though not unambiguously so.

The record of surface conditions during the subsequent billion years is hardly continuous, but
preserved rocks dating to this period very commonly show a sedimentary character of a type most
easily explained by deposition in an open, unfrozen ocean. The first truly unmistakable microbial
fossils date to 2.6 billion years ago, where they are found in the Campbell formation of Cape
Province, South Africa, and argue for open water conditions having a moderate temperature. At
about this time, we bid farewell to the Archean eon, and enter the Proterozoic eon, which extends
to the appearance of animal life 544 million years ago. Certain fine-grained silica based sedimentary
rocks known as cherts preserve information about past temperatures, as well as a wealth of fossils.
Very ancient cherts contain no unambiguous microbial fossils, but certain aspects of their chemical
composition point to temperatures as high as 70C at 3.5 billion years ago, declining to 60C at 2
billion years ago, and declining further to 30C at 1 billion years ago. Well-preserved ancient cherts
are rare, however, so this data by no means implies that temperatures were uniformly warm on
the young Earth. It only indicates that the Earth attained high surface temperatures at least part
of the time; there is ample room to hide lengthy cold periods within the gaps in the chert record,
as we shall soon see.

The earliest geological indication of the presence of glaciers on Earth occurs in the upper
part of the Pongola formation of South Africa, and dates to 2.9 billion years ago. The evidence
consists of glacial sedimentary deposits called diamictites, material of a sort usually transported
by floating ice, and even glacier-scratched rocks. This does not mean that there were no earlier
glaciations, but in light of the chert record and widespread occurence of marine sedimentary rock
it seems fairly certain that the Earth did not spend the bulk of its earlier history locked in a
deep-freeze. Still, the Pongola glaciation seems to mark the beginning of Earth’s long flirtation
with ice. The Makganyene glaciation begining around 2.3 billion years ago, recorded in rocks of
the Transvaal group of Southern Africa, was a big one, and may well have been global. We know
this because a record of the Earth’s magnetic field is preserved in the rocks, and this can be used to
infer the latitude at which the rocks were located when the glacial deposits were laid down. This
paleomagnetic data shows that there was ice within 12 degrees of the Equator, strongly suggestive
of a global glaciation.
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The first unambiguous bacterial microfossils (found in the Campbell group of South Africa)
date to 2.6 billion years ago, shortly before the Makganyene glaciation. While earlier fossil and
geochemical evidence is very strongly suggestive of life, the Campbell group fossils are the ocular
proof that biology was well underway. These fossils mark a watershed in another important way,
in that they are identifiable as cyanobacteria – the type of organisms that produce oxygen by
photosynthesis. The issue of when cyanobacteria evolved is hotly debated, with some lines of
indirect evidence putting their appearance early in the Archaean and others dating their onset to
the time of the Campbell Group microfossils. Be that as it may, the appearance of these fossils
speaks for a fairly benign environment, with open water and temperatures no more than about
40C. After the Makganyene glaciation, microbial fossils become quite abundant. The two billion
year old Gunflint Chert of Canada is one of many such marine sedimentary formations in which
cyanobacterial microfossils are preserved.

So far, no glaciations have been reported in the period between two billion years ago and 800
million years ago, though there are abundant sedimentary rocks dating to this time. The record is
far from continuous and the lack of glaciations in this period may be an artifact of preservation,
but the evidence certainly indicates that icy climates were not dominant at this time, and were
probably quite rare. The long hiatus in ice is terminated by the massive – and possibly global
– Snowball Earth glaciations of the Neoproterozoic, about 700 million years ago. Thereafter, the
climate alternated between fairly lengthy periods when the Earth was ice-free or nearly so, and
periods when there was at least some ice in polar regions. The ice never again, however, reached the
nearly global proportions it attained during the Neoproterozoic suggesting that the Earth passed
some new threshold of climate stability in the Neoproterozoic. What might that be? This is one
of the central questions of climate science.

Our overall picture of Earth history is that liquid water and moderate temperatures appeared
at least episodically very shortly after the Moon-forming collision, and that the next three billion
years had widespread open water with temperatures probably not exceeding 70C and generally
much less. These conditions were punctuated by occasional glaciations, only a very few of which
may have been global in extent. It was an environment that could support the evolution and
survival of life, including (by 2.6 billion years ago, if not before) photosynthetic life requiring
moderate temperature conditions. Let’s keep this picture of relative stability in mind as we go
on to discuss long-term changes in the atmosphere and the Sun – the two principle ingredients
determining the Earth’s climate, or indeed that of any planet.

There are many processes at play that cause the composition of a planet’s atmosphere to
evolve over time. In the earliest times, bombardments can help supply atmosphere-forming volatiles
such as water, nitrogen and carbon dioxide. Equally, however, sufficiently energetic bombardments
can cause loss of atmosphere through literally splashing it into orbit. On a volcanically active planet
with a hot interior, such as the Earth or Venus, or the younger Mars, new atmosphere is continually
being supplied by outgassing of volatile substances from the interior of the planet. The heat needed
to keep the interior of the planet churning so it can recycle minerals formed at the surface and cook
out volatile gases in the hot interior is supplied by leftover heat from formation of the planet and
by radioactive decay. How long this process can continue before the planet freezes out becomes
tectonically inactive depends on the size of the planet and the stuff it is made of; the nature of
the gases which come out of volcanoes and other types of vents depends on the chemistry of the
planet. For example, the early segregation of iron in the Earth’s core made it harder to bind up
oxygen in minerals, and therefore resulted in fairly oxidized gases like carbon dioxide (CO2), and
sulfur dioxide (SO2) being released in preference to gases like methane (CH4) and hydrogen (H2)
– though some of the latter two do nonetheless escape. The interior Earth also outgasses water
vapor (H2O), which is cooked out of hydrated minerals; the volume of the oceans appears to have



1.3. INTO DEEPEST TIME: FAINT YOUNG SUN AND HABITABILITY OF THE EARTH11

been in a steady state for a long time, though, indicating that the rate of release is balanced by
the rate of formation and subduction of new hydrated minerals at the surface. Nitrogen (N2) is
fundamentally different from other current and past constituents of the Earth’s atmosphere as it
doesn’t readily get incorporated into the minerals that form the bulk of Earth’s crust and interior.
Unlike, say, CO2, nitrogen does not cycle through the Earth’s interior. The bulk of the Earth’s
N2 is in its atmosphere and stays there, where it has probably been for almost all of our planet’s
history. This is likely to be the case as well for any other rocky planet made of stuff similar to the
Earth – Iron, oxygen (mostly bound up in minerals), silicon, magnesium and sulfur.

While atmosphere is being supplied by outgassing from the interior, other processes cause
material to be lost from the atmosphere. Parts of a planet’s atmosphere extend far out from the
surface, where hot, fast-moving molecules can reach escape velocity and escape to space. Besides
escape from random molecular motions, the solar-heated tenuous outer atmosphere can sustain
fluid flows which cause atmospheric mass to fountain systematically into the void. In addition, the
solar wind can literally blow way the outer portions of an atmosphere; the extent to which this
happens is affected by the intensity of the planet’s magnetic field, which shields the atmosphere
from the solar wind. As outer parts of the atmosphere are eroded, new gases from lower altitudes
well up to replace the lost material, sustaining the gradual loss of atmosphere. All three mass
loss processes preferentially remove lighter molecules, either because lighter molecules move more
swiftly for a given temperature, or because the outer atmosphere is enriched in gases having a lower
molecular weight. For a given density, a smaller planet has lower surface gravity, and so binds its
atmosphere less tightly; in consequence, escape of atmosphere to space proceeds more rapidly on a
small planet. Impacts by large, swift bodies can impart sufficient energy to part of the atmosphere
to blast it into space. This mechanism of atmosphere loss does not discriminate as to molecular
weight, but as with the other mechanisms, it is easier for a small planet to lose atmosphere this
way. Overall, the Moon or Mars is more prone to lose atmosphere than more massive bodies such
as the Earth or Venus, to say nothing of Jupiter or Saturn. For Earth and Venus, escape to space is
significant only for H2 and He, and of these the latter is important only as an indicator of planetary
history rather than as a physically or chemically active component of the atmosphere. Saturn’s
satellite Titan is an interesting case, as it maintains a mostly N2 atmosphere more massive than
that of Earth (per unit surface area) despite having a surface gravity lower than that of the Moon.
The very cold temperature of Titan helps it retain its atmosphere, but it is nontheless likely that
the persistence of the atmosphere requires a substantial rate of resupply from the interior of the
planet.

Some components of the atmosphere can also be lost through chemical reactions with rocks
at the Earth’s surface. A particularly important example of this is the Urey reaction, which removes
CO2 from the atmosphere. When CO2 dissolves in water, it forms a weak acid (carbonic acid),
which reacts with silicate minerals (e.g. CaSiO3) to form carbonate minerals (e.g. CaCO3, or
”limestone”). The reaction takes place only in the presence of liquid water, so if a planet becomes
so hot that liquid rain never reaches the surface, or if it somehow loses its water altogether, then
CO2 outgassed from the interior of the planet will accumulate in the atmosphere until the interior
source is depleted or the rate of supply is balanced by loss to space. On Earth, all of the CO2

presently in the atmosphere could be removed by the Urey reaction within 5000 years, forming a
layer of limestone a mere 5 millimeters thick; if all the carbon stored in ocean water were to outgas
as CO2 and react to form limestone, the process would take a half million years and form a layer
a half meter thick.

Life itself, once it appears, has a profound effect on atmospheric composition. While little
methane escapes directly from the Earth’s interior, bacteria known as methanogens can synthesize
it from H2 and CO2 or from organic material produced by other organisms. Methanogens may
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well have dominated the ecosystems of the Earth’s first two billion years, potentially allowing a
methane-dominated atmosphere to build up. The advent of life also had a profound effect on
nitrogen cycling. The bonds holding together N2 are so strong that in the abiotic world only rare
energetic events such as lightning strikes can form nitrogen compounds. In fact, though nitrogen is
an essential ingredient of all living material, higher forms of life – including all plants and animals
– are incapable of performing the chemical magic that makes N2 available to organisms. This trick
is accomplished by nitrogen-fixing bacteria, which can efficiently transform atmospheric N2 into
ammonium (NH4), in turn transformed into nitrate (NO3) which can be used by other organisms
in the synthesis of living matter. Other bacteria, in oxygen-starved conditions, can make a living
combining the oxygen in nitrate with carbon, returning N2 to the atmosphere in the process. It was
only in 1910, with the invention of the Haber Process for turning atmospheric N2 into ammonia
(NH3) that humans caught up with the bacteria. This innovation has become essential to the
human population, as the demands of industrial-style agriculture have far outstripped the ability
of the natural bacterial ecosystem to supply nitrate (which is not to deny that other forms of
agriculture might be able to live within the means provided by our bacterial friends). Nitrogen-
fixing bacteria are still way ahead of industry in terms of chemical sophistication, though, since
the Haber Process requires molecular hydrogen (made from fossil methane), an iron catalyst,
temperatures exceeding 400C, and operates at a pressure over two hundred times that of air
at the Earth’s surface; Nitrogen-fixing bacteria can do the same trick, in contrast, in ambient
temperature/pressure conditions and using materials found readily in their immediate environment.

In the absence of oxygen-producing photosynthetic life, only minuscule amounts of oxygen
would be present in the atmosphere, since only a trickle could be produced through the breakdown
of H2O by exposure to sunlight. That there was very little oxygen in the early atmosphere (under
0.2%, compared to 20% today) is confirmed by the widespread presence of striking rock structures
known as banded iron formations until 2.4 billion years ago. Banded iron formations can be laid
down only when iron is very soluble in the ocean and can be transported long distances. This
requires low oxygen, since in the presence of oxygen iron forms compounds that are not very
soluble in water. Additional evidence stemming from the chemical composition of certain sulfur-
containing minerals indicates that during at least some periods earlier than 2.6 billion years ago
the atmospheric oxygen content might in fact have been orders of magnitude lower than 0.2%.

Note that the appearance of oxygen-producing photosynthesis is not synonymous with the
rise of oxygen in the atmosphere. For oxygen to accumulate, a sufficient proportion of the organic
matter must be buried before it is oxidized by other bacteria, taking the synthesized oxygen right
back out of the atmosphere. Further, if the Earth had accumulated a great stock of available organic
matter in the ocean during its anoxic phase, this backlog would have to be worked off before oxygen
could begin to accumulate to any significant degree. Be that as it may, banded iron formations
begin to falter somewhat after the time of the Campbell Group cyanobacterial microfossils, and
disapear entirely by around 2 billion years ago. By this time, oxygen may have made up at
least 3% of the atmosphere. Once oxygen made its appearance in the atmosphere at significant
concentration, it changed all the rules of atmospheric chemistry, since it is so powerfully reactive.
In particular, it made it much harder for CH4 and H2 to accumulate in the atmosphere, since the
former oxidizes readily to CO2 and the later to H2O. The rise of oxygen may also have fostered
another great biological innovation – the eukaryotic cell, which has a complex internal organization
with specialized structures, including a nucleus within which genetic material is segregated. We
are made of eukaryotic cells, as are all animals and plants. Eukaryotic cells make their first
unambiguous appearance in the fossil record about 1.5 billion years ago, in the Roper Group shales
of Australia, though more indirect evidence suggests that eukaryotic life may have evolved much
earlier. However the answer to that issue may shake out, it is certain that eukaryotic life – even of
the single-celled variety – did not proliferate and diversify until much later in the Proterozoic.
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There was a sporadic reappearince of banded iron formations at the time of the Neopro-
terozoic Snowball events (600-700 million years ago), but by 600 million years ago oxygen was
approaching its present concentration and banded iron formations disappeared for good (at least
so far). This second pulse of oxygenation made the rise of multicellular animals possible, which
happened in a great flurry of biological innovation known as the Cambrian Explosion, occupying
a remarkably short span of years around 543 million years ago. It is even possible that the rise of
animals helped to stabilize atmospheric oxygen levels, by providing a reliable means of transporting
organic carbon to the sea floor where it can be buried and preserved. Simple multicellular ocean-
dwelling plants appeared much earlier, as might be expected from the fact that photosynthetic
organisms are not dependent on oxygen.

All of this atmospheric evolution takes place against a backdrop of a gradually brightening
Sun. The energy produced within a star leaves the star almost exclusively in the form of electro-
magnetic radiation – loosely speaking, light of all wavelengths. The net power output is called
the luminosity, and is measured in Watts (a measure of energy per unit time), just as if the star
were a light bulb. Stars like the Sun get their energy by fusing hydrogen into helium, and as
time goes on the proportion of helium in the Sun increases, thus increasing the mean molecular
weight of the Sun. This in turn means that the core of the Sun needs to contract and heat up in
order to maintain the pressure required to balance gravity. The increased density and temperature
increases the rate of fusion more than the reduced availability of hydrogen reduces it, so the rate
of production of energy – and hence the Solar luminosity – increases with time. The resulting evo-
lution of luminosity over time rests on fundamental aspects of solar physics that are not seriously
in question, and does not depend greatly on the finer points of solar modeling. The results of the
standard solar evolution model can be fit by the expression

I�(t) =
I�(t�)

1 + 2
5 (1− t/t�)

(1.1)

where I�(t) is the luminosity of the Sun at time t and t� is the current age of the Sun, usually
taken as 4.6 billion years. This formula was originally proposed to describe the younger Sun, but
it continues to be reasonably accurate out to times 4 billion years in the future as well.

It follows from Eq. 1.1 that 4 billion years ago the Earth received solar energy at only 75% of
the rate it does today. All other things being equal – atmospheric composition in particular – that
means the Earth would have been colder than it is today. How much colder? We will learn how to
do this calculation in the simplest way in Chapter 3, and add sophistication to the calculation in
Chapter 4. It turns out that if the atmospheric composition were the same as today’s atmosphere
throughout Earth’s history, then Earth should have been completely frozen over 4 billion years
ago, and given that ice reflects sunlight so well, it should still be completely frozen over today.
However, we know that incidents of global ice coverage are rare in Earth history, if indeed they
happened at all; we know with rather more certainty that the Earth is not solidly frozen over
today. This contradiction is generally known as the Faint Young Sun Paradox, though of course,
like most paradoxes it is not paradoxical at all once one understands what is going on. Calling it
a ”paradox” is just a way of starkly bringing home the fact that to account for the basic facts of
Earth’s climate history, the atmosphere must indeed have undergone massive changes – changes of
a sort that could substantially affect climate. How much would we need to increase CO2 or CH4

in order to make up for the faintness of the young Sun? This is another one of the big questions.
It will be answered in Chapter 4. A related Big Question is the extent to which CH4 (or some
other long-lived greenhouse gas) substituted for CO2 in maintaining the Earth’s warmth during
the Archaean. There is scattered evidence from mineral composition of fossil soils that during
some periods of the Archaean the CO2 concentration might not have been high enough to offset
the Faint Young Sun. This has led some researchers to jump to the conclusion that CH4 played the
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decisive role throughout the Archaean, but such a viewpoint rests on exceedingly shaky evidence.
It matters a great deal whether CO2 or CH4 did the trick, since the long term control of the
two gases is governed by very different processes, with very different time scales. The matter, at
present, must be considered unresolved.

A corrollary to the above resolution of the Faint Young Sun Paradox is that any atmosphere
that would be sufficient to keep the Early Earth unfrozen would make it uninhabitably hot with
the present Solar output. The atmosphere must have somehow changed in lock step with the
brightening Sun, in precisely such a manner as to keep the Earth in a habitable temperature
range – one where liquid water exists at or near the surface, but where the water never gets
hotter than about 100C – or indeed, even hotter than about 50C if cyanobacteria are to survive.
It defies belief that the required co-evolution of atmosphere with solar output could maintain the
required temperature range purely by coincidence, so it seems likely that some sort of temperature-
regulating mechanism is in operation. In Chapter 9 we’ll see how the Urey reaction can participate
in a geochemical thermostat for the Earth and similar planets. The Snowball episodes represent
temporary, and evidently rare, breakdowns of the temperature-regulating mechanism. Whatever
the regulating mechanism may be, it must be sufficiently fail-safe to allow for recovery from global
or near-global glaciations.

Given what we laid out earlier concerning the myriad processes churning out turmoil in
atmospheric composition, the reader should quite rightly feel it a bit silly to make the stipulation
”all other things being equal” in the statement of the Faint Young Sun Paradox. Indeed, even if
the solar output were constant over time, any number of the aspects of atmospheric evolution we
discussed earlier would have been sufficient to freeze or fry the Earth, so the gradual increase in
solar output has no special claim on our attention in this regard. To be fair, when the ”paradox”
was first laid out, much less was known about the ways the Earth’s atmosphere evolved, and with
much less certainty. From the standpoint of current science, however, the traditional framing of
the Faint Young Sun Paradox leaves a lot to be desired. It would be more satisfactory to refer to
the Habitability Problem, which could be stated as follows: How can the temperature of a planet
be maintained in the habitable range for billions of years, in the face of geological, geochemical and
biological turmoil in atmospheric greenhouse gas composition, and in the face of gradual increase in
solar output?. This is indeed one of the grandest of questions. The material discussed in Chapter
9 provides a plausible solution, but the book is far from closed on the Habitability Problem.

The history of the Faint Young Sun problem reveals something magnificent and deeply
inspiring about the nature of discovery in Earth and planetary climate. The basic physics under-
pinning the energy source of stars was worked out by Hans Bethe by 1939, and the existence of
benign conditions on the Early Earth was known (or at least inferred) even earlier. Yet, it was
not until 1972 that Carl Sagan and George Mullen put the two bits together and inferred that
there was indeed a big problem, requiring a profound answer 3. This insight sparked a revolution
in thinking about planetary climate, that was in its own way as earthshaking as the discovery of
DNA was in its own domain. This history highlights a lovely thing about our subject: The most
profound new phenomena are often discovered by putting together a few bits of basic physics and
chemistry in creative new ways. For the most part, new ideas come from playing with simple
models, not from enormous incomprehensible computer simulations that take huge teams to put
together. The entire goal of this book is to teach students to think the way Carl Sagan and other
innovators did, and to provide the tools needed to build the simple models needed to turn a bright
idea into real science.

3Sagan and Mullen proposed accumulation of atmospheric ammonia as a resolution to the paradox, but later
work on atmospheric chemistry showed that sunlight destroys ammonia too rapidly to allow it to build up to the
required concentrations. Attention later shifted to CO2 and CH4.
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The problem of maintaining long-term climate stability is not just an issue for Earth. Planets
that could support some form of life are naturally of special interest, and while other forms of life
than those we know of might prefer quite different conditions than prevail on Earth, the long-term
maintainence of climate in a fairly narrow ”habitable” range clearly would make it easier for life to
evolve and persist. Any potentially life-bearing planet in any solar system anywhere must negotiate
a way to maintain long-term habitability in the face of the gradual increase of the brightness of
its sun and gradual or not-so-gradual changes in the composition of its atmosphere. Naturally,
such considerations apply to the evolution of the climates of other planets in our very own solar
system. Venus and Mars did not manage to maintain their habitability, or perhaps were never in
a habitable state. How close did we come to the same fate?

1.4 Goldilocks in space: Earth,Mars and Venus

Until well into the 1960’s, science fiction stories about Venus generally portrayed it as a steamy
jungle planet, but one where intrepid explorers could perhaps survive unprotected on the surface.
The idea of a jungle and breathable air was of course unfounded speculation, but the general
picture of the climate was not wholly without merit. After all, the dense reflective cloud deck of
Venus was readily observable – it is what makes Venus so bright as the ”evening star” – and the
reflection of sunlight could easily make up for the fact that Venus is closer to the Sun than is Earth.
In fact in Chapter 3 we’ll see that the reflectivity more than makes up for the proximity. In the late
1950’s the picture of Venus as a habitable world began to unravel. Recall that the temperature
of Earth’s Moon was determined by examining infrared radiation from that body. Viewed in the
infrared spectrum Venus appeared quite cool, but in the microwave (”radar”) spectrum it was far
too bright. In fact, seen in the microwave, Venus radiated like a body with a temperature well
in excess of 600K (327C). A popular hypothesis at the time was that the anomalous microwave
emission arose in the upper portions of the Venusian atmosphere. Another view held that the
microwave emission came from the surface of the planet, and that the atmosphere was transparent
to microwaves but relatively opaque to infrared. The latter idea suffered from the lack of a plausible
mechanism to make the surface of Venus so hot. Then, in 1960 the young Carl Sagan proposed that
Venus has a very thick atmosphere rich in greenhouse gases, which would heat up the surface to the
required temperature. Little was known about the mass of the atmosphere or its composition at
the time, but Sagan developed simple models of the greenhouse effect of a thick atmosphere, which
showed that the trick could be accomplished with an atmosphere consisting of mostly carbon
dioxide with some water vapor mixed in, having a total mass three or four times that of the
Earth’s atmosphere. Sagan even recognized that since the planet was too hot for water vapor
at the hypothesized concentration to condense and reach the surface as liquid, the Urey reaction
(which removes carbon dioxide from the atmosphere and turns it into limestone) could not take
place. This would make it easy for carbon dioxide to accumulate in the atmosphere, though even
Sagan did not envision just how far this would go.

A series of interplanetary probe missions over the next two decades – four US Mariner mis-
sions, two US Pioneer missions and sixteen Soviet Venera missions including eight Venera missions
that returned data successfully from the surface – refined the estimates of surface temperature and
substantially revised the conception of the atmospheric mass and composition. By the late 1970’s,
it was known that the surface temperature was nearly uniform at 737K. The atmosphere was
found to be much more massive than originally thought, in fact sufficiently massive to raise the
surface pressure to 92 times that of Earth’s atmosphere. And, it was found that the atmosphere
consisted almost entirely of carbon dioxide, with only traces of water vapor remaining. The thick
clouds that give Venus its high reflectivity were found to be made not of water, but of droplets of
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sulfur dioxide and concentrated sulfuric acid. It took the better part of another decade before the
challenges of dealing with the effect of such an exotic atmosphere on climate were fully mastered
and a fully satisfactory account of the high surface temperature could be given. Still, the initial
exploration of the problem was carried out with simple models very like the ones we’ll introduce in
the first half of Chapter 4. The discovery of the true nature of Venus climate is another illustration
of the tenet that big ideas grow from little models.

Mars yielded up its climatic secrets somewhat earlier, because it was not hidden behind the
thick atmospheric veil that complicated observation of Venus. Mars was observed in the infrared
using the Mt. Wilson telescope during the opposition (time of closest approach) of 1926 and 1927.
Like all infrared observations, the interpretation was complicated by interference from the Earth’s
atmosphere. By 1947, the understanding of the effect of atmospheres on the emission of infrared
light had progressed to the point that the mass and composition of the Martian atmosphere could
be estimated. Based on these measurements, Kuiper estimated that Mars had an atmosphere
that was almost entirely CO2, with a sufficient mass that the surface pressure on Mars would be
only .03% of the surface pressure on Earth. This turns out to be an underestimate of the true
mass by about a factor of twenty, but even so, the picture of Mars as a nearly airless planet was
not far wrong. By way of comparison, infrared observations of Venus interpreted in the 1940’s
using similar techniques suggested that the surface pressure of Venus was a fifth that of Earth –
an underestimate by a factor of nearly 500. The Mt. Wilson infrared observations of Mars also
indicated that the atmosphere was almost entirely CO2, with almost no water – so little, in fact,
that water vapor wouldn’t condense until temperatures fell below −60C, and at those temperatures
it would condense into frost, not liquid. Infrared observations showed further that the visible polar
ice caps of Mars are most probably made of water ice rather than frozen CO2. Temperature
estimates based on the Mt. Wilson infrared observations were less informative. Nicholson and
Pettit, in the same paper in which they discuss Lunar temperatures, noted a very large day/night
cycle of Martian infrared, indicating extreme diurnal constrasts unlike those found on Earth. They
concluded that this was due to the lack of water vapor in the Martian atmosphere, but we shall
encounter the true reason in Chapter 8. Writing in 1947, Adel reported quantitative estimates of
Martian surface temperature ranging from as low as 236K to as high as 318K (or even higher if
the surface was assumed to emit infrared inefficiently, as does granite). Some of the variation in
reported temperatures may have been due to the fact that these were not whole-disk observations,
insofar as Mars exhibits extreme temperature contrasts. The higher end of the estimates based on
Mt. Wilson turned out to be far greater than the actual maximum ground temperature encountered
anywhere on the planet.

Given the thin atmosphere, what does theory lead us to expect about the Martian surface
temperature? By 1947, it was a simple exercise to compute the expected temperature of airless
bodies like the Moon, using arguments like those we’ll discuss near the beginning of Chapter 3.
Planets with atmosphere present more of a problem. The atmosphere of Mars is thin compared
to that of Earth, but how thin does an atmosphere have to be (particularly if it’s pure CO2) in
order to have a minimal effect on planetary temperature? We’lll learn how to answer that question
in the latter portions of Chapter 3. Based on similar reasoning, Kuiper, writing in 1947, inferred
correctly that the atmosphere would have only minor effect on T, in particular allowing severe
night-time temperature drops. By the 1940’s Mars was already looking inhospitable – a mostly
cold, dry nearly airless body where (it was still hoped) conceivably lichens might eke out a living
but certainly not Thuvia, Maid of Mars.

Ground-based and theoretical estimates of the Martian climate improved gradually over
the next decade, but the real breakthrough came with the Mariner flyby of 1965 and the two
Viking orbiters and landers of 1976. Spaceborne infrared observations gave the first detailed
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picture of geographic variations of the ground and air temperature, and Viking provided in situ
air temperature measurements of the ground. These observations consolidated the picture of Mars
as a planet which (as we find it now) has more in common with the airless moon than with Earth.
Even hopes of lichens were dashed, though it is too soon to give up on bacterial life, especially in
view of the innovative chemical entrepreneurship shown by non-photosynthetic bacteria on Earth.
In discussing Martian temperatures, one must take care to distinguish the air temperature from
the temperature of the ground itself, as the two differ considerably. At high noon in the tropics,
the ground can indeed briefly get as warm 300K, though temperature drop by 100K or more
at night. The air temperature also shows an extreme day/night cycle, but the peak daytime air
temperatures are far less than the peak ground temperature; at the Viking Lander 1 site, in the
tropics at 22N latitude, the daytime air temperature never exceeds 260K, and plummets to under
200K at night. The reason the air temperatures are so much lower than the ground temperatures
will become clear in Chapters 4 and 6.

There are considerable seasonal and latitudinal variations in daytime temperature, and
the Southern Hemisphere polar summer is notably warmer than the Northern Hemisphere polar
summer. Night-time temperatures are comparatively uniform both geographically and seasonally;
the Mars surface cools so fast that that once it is dark, it evidently doesn’t matter much whether
it has been dark for a few hours or a hundred days. The Southern Hemisphere winter pole does
get notably colder than the rest of the planet, dropping to as low as 160K. The Viking landers
also provided the first clear picture of surface pressure variations on Mars. They showed that
the Martian surface pressure varies from a high of about 1% of Earth’s surface pressure to a low
of about 0.6%, with the lowest values occurring in Southern Hemisphere winter. Since surface
pressure gives a measure of the mass of air in the atmosphere (2), the large variation of pressure
indicates that a considerable portion of Mars’ CO2 atmosphere snows out over the North pole in
Northern winter and the South Pole in Southern winter, only to sublimate back into the atmosphere
as spring approaches. A theory for the seasonal cycle of Martian temperature and pressure will be
developed in Chapter 8.

So, Venus, like the porridge tasted by Goldilocks is too hot. Mars is too cold, and Earth is
just right. One could quite reasonably object that this is a view prejudiced by our own status as a
form of terrestrial life, and that conditions ”too hot” by our standards could well be ”just right”
for somebody else. However, it appears that there’s nobody home on either Venus or Mars (not
even a microbial somebody), so if conditions there are indeed ”just right” for somebody, it must
not be very easy for such a somebody to evolve, given that it didn’t happen in the past four billion
years.

Presumably, Venus started out with a composition rather similar to Earth. What went
wrong? Why did it keep most of it’s CO2 in its atmosphere, whereas most of Earth’s CO2 got
bound up in carbonate rocks? Where did its water go? The answer came in 1967 with the theory of
the runaway greenhouse, formulated first by M. Kombayashi and shortly thereafter independantly
rediscovered by Andrew Ingersoll of Caltech. This theory puts together two simple bits of physics,
the first being that water vapor content of a saturated atmosphere increases exponentially with
temperature (Chapter 2), and the second being that water vapor is a greenhouse gas (Chapter 4).
When the two are put together, it is found that a planet which receives sufficient solar radiation
can get into a runaway cycle where the planet warms in response to absorbed sunlight, which
causes more water vapor to enter the atmosphere, which causes more greenhouse effect, which
leads to further warming in an unstable feedback loop that doesn’t end until the entire ocean
is evaporated into the atmosphere. At that point, the water vapor in the upper atmosphere
breaks down into hydrogen and oxygen under the influence of high energy solar radiation, and
the hydrogen escapes to space while the oxygen reacts with rocks. Without liquid water, the
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Urey reaction which turns CO2 into limestone can’t take place, so all the outgassed CO2 stays
in the atmosphere. The runaway greenhouse theory (explored in Chapter 4) gives rather precise
predictions of the circumstances under which a runawy can occur, and explains why Earth did
not undergo a runaway despite the fact that it has a water ocean. The work of Kombayashi and
Ingersoll is another example of the general idea that big ideas come from simple models. Their
reasoning was based on simple radiation models of the sort developed in the first half of Chapter
4. This work also illustrates another general principle of planetary climate: profound results can
be obtained by combining a few bits of very basic physics in a novel way.

Radar mapping from the Magellan orbiter of 1990 revealed another remarkable fact about
Venus: Unlike the Earth, with long-lived continents and a gradually subducted sea floor, Venus
has a young-looking uncratered surface, suggesting that the crust may have been engulfed and
resurfaced as recently as 500 million years ago. This has important implications for planetary
habitability. Evidently, the formation of a planetary crust, as at end of Hadean, is not end of the
peril from fires in the deep. For habitability, the crust has to be relatively stable, engulfed slowly
in subduction zones (as is the Earth’s sea floor) rather than being subject to episodic catastrophic
volcanism as seems to have been the case on Venus. However, if the crust is engulfed too slowly,
then limestone that forms by the Urey reaction is only sluggishly recycled, leading to a drawdown
or atmospheric CO2 and (under some circumstances) a very cold planet; since photosynthesis uses
CO2 as a feedstock, low CO2 impedes habitability even if a planet is in an orbit where it doesn’t
need the greenhouse effect of atmospheric CO2 in order to stay warm. The question of when a
planet has plate tectonics like Earth or when it has episodic catastrophic resurfacing like Venus,
is another one of the great questions of planetary science, though one we will not take up at any
great length in this book.

Mars may be impoverished in atmosphere compared to Venus, but it has something Venus
lacks: a geological record of the distant past preserved in its crust. In fact, the ancient features
on the surface of Mars are far better preserved than is the case on Earth. Mars appears to have
lost most of its atmosphere quite early on, leading to a near-halt in the rate of erosion of surface
features. The first high resolution data of Martian surface features, returned by the Mariner
mission, revealed a startling fact. Evidently, Mars was not always the dry, frigid planet cloaked
in a tenuous atmosphere that we see today. The Mariner photographs revealed dry river-like
channels for which the only likely explanation is flowing surface water, which would be impossible
under the conditions of the present Martian climate. A more recent image of this type of feature
is shown in Figure 1.1. The rate of cratering of a planet goes down with time, so the features
can be dated by counting superposed craters; many of the major river-like features date to very
early in Mars history, perhaps 4 billion years ago. This led to the concept of a ”warm,wet Early
Mars.” But how could Mars have been so much warmer than it is at present, at a time when the
Sun was so much fainter. Mars presents an even more extreme version of the Faint Young Sun
paradox than does the Earth. It will probably come as no surprise that it was Carl Sagan who
first pointed out the implications of Martian dry river networks. It is still somewhat disputed
whether the surface features really demand that Early Mars be warm and wet, but adopting the
warm-wet view, the resolution of the Faint Young Sun problem, as was the case for Earth, lies in
the supposition that the Early Mars atmosphere had a substantially stronger greenhouse effect.
What kind of atmosphere could warm Mars to the point that liquid water could flow long distances
at the surface? That question is taken up in Chapters 4 and 5.

If Mars started out with such a dense atmosphere, where did it go? Some possible answers
are suggested in Chapter 9. Modern high-resolution images suggest other forms of massive climate
change on Mars. In particular, there are tropical landform features suggesting that at some time in
the past, glaciers formed in the Martian tropics, whereas virtually all the ice is today sequestered
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Figure 1.1: Nanedi Vallis on Mars, observed by the Mars Orbiter Camera on the Mars Global
Surveyor Mission. The image covers an area 9.8km wide and 18.5km tall.
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at the cold polar regions. The tropical glacier landforms suggest that at some time in the past, the
equatorial regions of Mars were colder than the poles? How could that be? The answer is provided
in Chapter 8.

The fact that Earth maintained habitable conditions while Venus succumbed to a runaway
greenhouse and got to hot while Mars lost its atmosphere and got too cold raises the question of just
how narrowly Earth escaped the fate of Mars and Venus. How much could Earth’s orbital distance
be changed before it turned into Mars or Venus, and how would the answer to this question change
if Earth were more massive (making it easier to hold onto atmosphere) or less massive (making it
easier to lose atmosphere? If Mars were as large as Earth, would it still be habitable today? What
if Venus were as small as Mars? Perhaps if the orbits of Mars and Venus were exchanged, our solar
system would have three habitable planets, instead of just one.

The range of orbital distances for which a planet retains Earthlike habitability over billions
of years is know as the habitable zone. Determing the habitable zone, and how it is affected by
planetary size and composition as well as the properties of the parent star, is one of the central
problems of planetary climate.

1.5 Other Solar System planets and satellites

For the gas giant planets – Jupiter and Saturn – many of the most striking questions that arise
are fluid dynamical in nature. These questions include the origin of the banded multiple-jet struc-
ture of the atmospheric flow, and the dynamics of long-lived atmospheric vortices, most famously
Jupiter’s Great Red Spot. We shall have little to say about such fluid dynamical questions in this
book. However, the thermal structure o the atmosphere provides an essential underpinning for
any dynamical inquiry. Moreover, the thermal structure determines the rate of heat loss from the
planet, and therefore plays a crucial role in the long-term evolution of the gas giants. The thermal
structure also affects atmospheric chemistry and the nature of the colorful clouds that allow us to
visualize the spectacular fluid patterns on these planets.

The gas giants present an interesting contrast to rocky terrestrial-type planets, because of
the lack of a solid surface. Instead of solar radiation having the possibility of penetrating to the
ground and being absorbed there, thus heating the atmosphere from below, solar radiation on the
gas giants is deposited continuously throughout the upper portion of the atmosphere as the solar
beam propagates downward and attenuates. Further, unlike the case of the rocky planets where
heat flux from the interior is an insignificant player in climate, the fluid nature of the gas giants
allows considerable heat flux from the interior to escape to space. For both Jupiter and Saturn,
this heat flux is comparable to the flux of energy received from the Sun. One of our objectives
in subsequent chapters will be to learn how the distinct nature of atmospheric driving on the gas
giants affects the thermal structure. The gas giants also offer an interesting opportunity to test
ideas about how climate is affected by atmospheric composition. These planets are mostly made
of H2, with a lesser amount of He and trace amounts of a range of other substances, including
ammonia (NH3), methane (CH4) and water, the latter three of which exist in both gaseous and
condensed forms. The composition affects the thermodynamics of the atmosphere, as well as the
optical properties for both infrared and visible light.

Uranus and Neptune are like the gas giants in that they have no distinct solid surface at
any depth that could significantly affect the atmosphere. However, they are usually classified
separately as ice giants because they contain a much higher proportion of ice-forming substances
such as water, ammonia and methane. The composition of the outer portions of the atmospheres
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can be determined by spectral observations, and contain a high proportion of hydrogen and helium.
The overall density of the planets, however, constrains them to be composed primarily of an ice
mantle. In the case of Uranus, the ice mantle must make up between 9.3 and 13.4 Earth masses
worth of the total mass of the planet, which is 14.5 Earth masses. Similar proportions apply to
Neptune. The commonly used term ”ice mantle” is somewhat misleading, since the substance is
actually a hot, slushy mixture that would be more aptly described as a water-ammonia ocean.
Whatever term is used,the very thermal structure that determines the nature of the transition
between the ice mantle and the more gaseous outer atmosphere engages all the same issues of
atmospheric energy balance as one encounters on other planets. A novel feature of Uranus is its
axial tilt. It’s axis of rotation is very nearly perpendicular to the plane of the orbit. That means
that in the Uranian Northern Hemisphere summer, the North pole is pointing directly at the Sun
and the entire Southern Hemisphere is in darkness. By way of contrast, the Earth’s axis is only
tilted by 23.4o at present. The high axial tilt potentially gives Uranus an extreme seasonal cycle,
though it will take a long time to observe it since Uranus’ year lasts 84 Earth years. The effect
of axial tilt on seasonal cycles of planets are discussed in general terms in Chapter 8. The very
low solar radiation received at the distant orbits of Uranus and Neptune leads to extremely cold
outer atmospheres, particularly in the case of Neptune. These planets provide an opportunity
to examine the novel features of an atmosphere driven by an exceedingly weak trickle of solar
energy, supplemented by an equally feeble trickle of heat from the interior. Despite the weak
thermal driving, Neptune has by far the strongest winds in the Solar system, as well as a variety
of interesting meteorological features. We will not say much about planetary winds, but as in the
case of the gas giants, a good understanding of the thermal structure is a prerequisite for any
attack on the meteorology.

The gas and ice giants also challenge our notion of habitable zones – orbits where a planet
has some region where there are Earthlike temperatures allowing for liquid water. The gas and ice
giants have no distinct surface, but there is some depth on each of them where the temperature
is Earthlike and liquid water can exist. The atmosphere also have plenty of chemical feedstocks
for organic molecules, including ammonia and methane. The pressures are no greater than those
seen at the bottom of the Earth’s ocean. One may have some prejudice in favor of surfaces for life
to live on, but it must be recalled that on Earth life first arose in the oceans and indeed stayed
there for many billions of years before venturing onto land. The gas and ice giants could just as
well be thought of as being ”all ocean” rather than ”all atmosphere” so it is far from clear that
they are inhospitable, at least for chemosynthetic forms of life that don’t need much sunlight. Our
thinking about habitable zones is overly prejudiced toward life that carries out its existence on a
rocky surface.

From the standpoint of planetary climate, one of the most interesting Solar System bodies
is not a planet at all, but a satellite. Titan, which orbits Saturn, is a fairly large icy body with a
radius of that is 76% of that of Mars. Because it is composed of ice rather than rock, the surface
gravity is low: 1.35 m/s2, which is actually lower than the Moon’s surface gravity, though the
Moon is smaller than Titan. What makes Titan interesting, however is its dense atmosphere. The
atmosphere of Titan consists mainly of nitrogen, with a surface pressure about 1.5 times that of
Earth. What is even more interesting is that the lower portion of the atmosphere is about 30%
methane. At the cold temperatures of Titan (about 95K) methane can rain out, and participates
in a hydrological cycle analogous to that of water on Earth – but operating at a much colder
temperature. In subsequent chapters we will develop the physics to examine the similarities and
differences between the role of methane on Titan vs. water on Earth. Titan’s atmosphere is also a
seething organic chemical factory, with complex long-chain hydrocarbon hazes being manufactured
from methane in the upper atmosphere. These hazes absorb solar radiation, shade the surface, and
are a key player in Titan’s climate. Such organic hazes were first discovered on Titan, but there
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are speculations that similar hazes could have been present in methane-dominated atmospheres of
the Early Earth.

A major question about Titan is why it has an atmosphere left at all . Given the low gravity,
the N2 atmosphere would be expected to escape fairly quickly (we’ll have a look at the relevant
physics in Chapter 9). Moreover, the chemical reactions in the atmosphere should gradually
convert all the methane into a tarry sludge sequestered at the surface. In some way or another, the
atmosphere of Titan must be dynamically maintained by recycling of chemicals deposted on the
surface, and by outgassing of N2 (probably in the form of ammonia) and CH4 from the interior.
Precisely how this happens is one of the Big Questions of Titan.

Even icy moons without an appreciable atmosphere can manifest features of considerable
interest. Jupiter’s moon Europa is a case in point. This satellite has a water ice crust between 10
and 50 km thick, but beneath the crust there lies a liquid water ocean. Europa shows an intriguing
range of crustal features, including some that suggest melt-through of the ocean. Of course, the
existence of the ocean has attracted attention as possible habitat for life. The icy moons challenge
the epistemological boundaries of planetary science. At the cold temperatures of Europa’s surface,
as on Titan, water ice is basically a rock, just as sand can be considered an ”ice” of SiO2 on Earth.
The ice-rock forms minerals with ammonia and methane and other compounds, and when warm
enough the ice-minerals can flow or melt and lead to cryovolcanism. When studying the crust and
interior of Europa or Titan or other icy moons are we doing geology or oceanography or glaciology?
Whatever one wants to call it, these moons are, as has been said, ”always icy, never dull.”

1.6 Farther afield: Extrasolar planets

Up until 1988, the Solar system was the only field of play for students of planetary climate,
and it provided the only example against which theories of planetary formation could be tested.
Revolutionary improvements in detection methods led to the first confirmed detection of a planet
orbiting another star in that year, and instrumentation for planetary detection has continued to
improve by leaps and bounds. As of the time of writing, over 228 planets orbiting stars within 200
parsecs (652.3 light years) of Earth have been detected, and the rate of detection of new planets
is if anything accelerating. Certainly, much of the excitement surrounding the new zoology of
planets has revolved around the prospect for detecting a planet that is habitable for life as we
know it – or have known it to be in the past few billion years of Earth history. Perfectly aside from
the habitability question, though, the rich variety of new planets discovered offers the student of
planetary climate stimulus for thinking well outside the box of how the climates of known Solar
System planets operate and have evolved over time.

Planets have been detected in orbit about a variety of different kinds of stars, so it is
necessary to learn something of how stars are characterized. At the most basic level, stars are
classified according to their luminosity (i.e. their net power output) and the temperature of the
star at the surface from which the starlight escapes to space. The luminosity is determined by
measuring the brightness of the star as seen from Earth’s position, and then correcting for the
distance between the star and the Earth. For relatively nearby stars, the distance can be measured
directly by looking at the tiny shift in angular position of the star as seen from opposite ends of the
Earth’s orbit, but for stars farther than 500 parsecs (1630.8 light years), more indirect inferences are
required. The stellar effective temperature is determined by measuring the spectrum of the starlight
– how the brightness changes when the star is observed through different filters. Hotter stars have
colors towards the blue end of the spectrum, while cooler stars tend toward the red. Hot stars emit
more energy per unit surface area, but a reddish cool star can still have very high luminosity if it is
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very large, since it then has more surface area that is emitting. The energy sustaining the emission
of starlight comes from the fusion of lighter elements into heavier elements. Since hydrogen is by
far the most common element in the Universe that can participate in thermonuclear fusion, the
overwhelming majority of stars ignite by fusing hydrogen into helium. These stars are known as
Main Sequence stars, and stellar structure models predict that there is a distinct relation between
the luminosity and emission temperature for stars that get their energy in this way. The stellar
structure theories imply that the position of a star on the Main Sequence is determined primarily
by its mass, with more massive stars being both hotter and more luminous. Moreover, stars spend
most of their lifetimes on the main sequence, so that a scatter plot of luminosity vs. temperature of
stars – a Hertzsprung- Russell diagram shows most stars to be clustered along the main-sequence
curve. Indeed, the Main Sequence was discovered by plotting catalogs of stars in this way long
before the energy source of stars was discovered.

Stars do not evolve along the main sequence. Rather, they enter it at a certain position when
fusion ignites, remain near the same point for a certain amount of time while gradually brightening,
and then leave the main sequence for a comparatively short afterlife as a brighter star with a more
rapidly evolving spectrum. What happens when a star leaves the Main Sequence depends on the
star’s mass. The Sun will spend a billion years or so as a Red Giant, before collapsing into a
gradually fading white dwarf. Main Sequence stars are thought to be the best candidates for hosts
of habitable planets, since they provide relatively long-term stable stellar environments. Once a
star leaves the main sequence, the climates of any unfortunate planets the star may have had will
have been radically disrupted, if indeed the planets continue to exist at all; there will be relatively
little time for any new form of life to establish itself. Nonetheless, planetary systems do exist
off the main sequence, and these planets, too have their points of interest. The first confirmed
detection of a planet orbiting a Main Sequence star did not occur until 1995.

Just as the luminosity of the Sun increases over time, the luminosity of other Main Sequence
stars increases during their time on the Main Sequence. However, the lifetime of a star on the Main
Sequence varies greatly with the mass of the star. The mass of the star determines the amount
of nuclear fuel available to sustain the star’s life on the main sequence, while the luminosity give
the rate at which this fuel is consumed. The Main-Sequence lifetime of a star with mass M and
luminosity I, scaled to values for the Sun, is estimated by

τ = τSun
M

MSun

ISun

I
(1.2)

Main sequence stars have a power law mass-luminosity relationship I ∝ M3.5, so on the Main
Sequence the lifetime scales with luminosity according to the law

τ = τSun(
ISun

I
)1.29 (1.3)

Bright, hot, blue massive stars thus have a much shorter lifetime on the Main Sequence than dim,
cool reddish dwarf stars. The Sun has a Main Sequence lifetime of about 10 billion years, and is
nearly halfway through it’s time on the Main Sequence.

Figure 1.2 shows the Hertzsprung-Russell diagram for stars that are known to host one
or more planets. Astronomers designate the colar (equivalently surface temperature) of stars
according to spectral classes given by the letters O, B,A,F,G,K,M extending from hottest to coldest,
with numbers appended to indicate subdivisions within a spectral class. Our Sun is a class G2 Main
Sequence star. The diagram shown in the Figure represents a tiny subset of the many millions of
stars that have been catalogued, and none of these stars (so far) have spectral classes hotter than
F. The stars cluster along the Main Sequence simply because there are more stars in general along
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Figure 1.2: Scatter plot of luminosity vs. effective surface temperature for stars about which
at least one orbiting planet has been detected as of 2007. Luminosity is given as multiples of
luminosity of the Sun. The colder stars are redder while the hotter stars are more blue in color.
The letters at the top indicate the standard spectral classification of stars in this temperature
range, and the dashed line approximately locates the Main Sequence. The Sun is a class G2 Main
Sequence star.

the Main Sequence than elsewhere. There is also a selection bias due to the technologies available
at present for detecting planets, which work better for some kinds of stars than for others. Thus,
the gap in detections between K and M0 stars may be an artifact of detection bias rather than a
reflection of some basic feature of planetary formation.

There is a rich supply of planets orbiting stars between spectral classes G0 and K, as well
as a good handful of planets around bright red giant stars off the main sequence. The cluster of
detections around M5 dim red-dwarf stars are particularly interesting, as many of these turn out
to represent the most Earthlike planets to date – again a detection bias, because it is easier to
detect low-mass Earthlike planets around low mass stars using present technology. These M-dwarf
stars are very dim, so a planet has to be in a very close orbit about its star in order to be as warm
as Earth. In compensation, these systems have very long lifetimes compared to the Sun and other
brighter stars. According to Eq. 1.3, an M5 dwarf spends about 100 times as long on the main
sequence as the Sun does, and so this kind of star will brighten only very slowly over time. Such a
star provides a very stable climate to its planet, and requires much less adjustment of atmospheric
conditions than the Earth had to accomplish to resolve the Faint Young Sun problem. In contrast,
an F0 star would spend under a billion years on the Main Sequence, and if the history of life on
Earth is anything to go by, life around an F0 star would be snuffed out at the prokaryotic stage,
before it could even begin to think of making oxygen. Aside from affecting the lifetime, the spectral
class of the star affects the degree of absorption of stellar radiation by whatever atmosphere the
star’s planet may have, and this too provides a lot of novel things to think about when pondering
the climates of extrasolar planets.
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That takes care of the stars, but what is known about the extrasolar planets themselves?
Here, too, there is a detection bias, since it is much easier to detect massive planets comparable
in mass to Jupiter than it is to detect more Earthlike planets. Most planets detected to date
are very massive planets which, according to theories of planetary formation, are likely to be gas-
giants like Jupiter or Saturn, or ice giants like Neptune or Saturn. The full variety of planetary
climates offered by the various combinations of planetary mass, orbital characteristics and stellar
characteristics is hard to convey by looking at just a few graphs. We’ll give a small sampling of this
variety below. In the course of the exercises in this book the student will have ample opportunities
to explore the wider universe of exoplanets.

One of the key determinants of planetary cliamte is the rate at which the planet receives
energy from its star. This is a function of the luminosity of the star and the distance of the planet
from the star, which varies to some extent in the course of the planet’s year (as discussed in Chapter
8). Planets that receive more stellar energy flux than the Earth will tend to be hotter, all other
things being equal, whereas planets that receive less will tend to be colder. The left panel of Fig.
1.3 shows the mass of the planets discovered so far and plotted against the stellar flux heating the
planet at the time of the planet’s closest approach to its star. The masses are measured relative
to the mass of Jupiter and the fluxes are measured relative to Earth’s solar heating. One Earth
mass is 0.00315 times the mass of Jupiter. On this diagram, a planet with a relative flux of unity
would have would have an Earthlike temperature if its atmosphere were like Earth’s. We see that
a great many planets with a mass one tenth Jupiter mass or greater have been discovered; these
are all likely to be gas giants or ice giants made mostly of hydrogen and helium. Though these
are in some ways like Jupiters, their climate has no real analog in the Solar system, since most of
them are in orbits where the planet receives at least as much stellar energy as the Earth receives
from the Sun. These are all ”hot Jupiters,” and represent climates very different from anything in
the Solar System. Could Jupiters receiving Earthlike stellar radiation be habitable for life? That
is certainly a Big Question, requiring understanding of the climate of such planets. Even more
exotic are the giant planets receiving vastly more stellar flux than the Earth – up to one thousand
times as much, in fact. These are ”roasters” – very hot gaseous planets in close orbits about their
host stars. Planetary formation theory gave no inkling that such things should exist, and indeed
the existence of roasters poses real challenges for the theory.

Another way that the new extrasolar planets offer novel climates is in the nature of their
orbits. Solar System planets, except for Pluto, have fairly circular orbits. However, most exoplanets
have highly elongated orbits with a considerable difference between the distance of closest approach
to the star (the periastron) and the distance of farthest remover from the star (the apastron). The
range of orbital elongation is shown in the right panel of Fig. 1.3. Since the stellar energy goes
down like the square of the distance from the star, the planets with highly elongated orbits will
have novel seasonal cycles unlike any encountered in the Solar System. They would tend to heat
up to a great degree at periastron and cool down, perhaps freezing over any ocean, at apastron.
Could such a planet be habitable? The answer depends a lot on the thermal response time of the
planet’s atmosphere and ocean, which could average out the orbital extremes. The relevant physics
is discussed in Chapter 8.

The orbital period, or ”year”, of the extrasolar planets also varies widely, as shown in the
left panel of Fig. 1.4. Planets have been discovered with a wide range of orbital periods, ranging
from as little as two Earth days to as much as 6000 Earth days. Planets in close-orbits with short
orbital periods are likely to be tide locked and always present the same face to the star, just as
the Moon always presents the same face to the Earth. The Super Earth’s to be discussed shortly
are mostly in this category. Tide-locked planets offer novel possibilities for planetary climate. The
night-side could get very cold, and if the planet has an ocean, it might freeze over completely.
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Figure 1.3: Left panel: Scatter plot of mass of extrasolar planets in units of Jupiter masses vs.
the flux of stellar energy impinging on the planet at the time of closest approach (the periastron).
Right panel: Scatter plot of the ratio of farthest (apastron) to closest (periastron) distance of the
planet from its star in the course of the planets orbit vs. the stellar energy at the time of closest
approach. The stellar energy flux is given as a multiple of the corresponding flux for the Earth.

The day side would be hot, but there could be a habitable zone near the ice margin. Further,
the transport of moisture and heat from the day side to the night side poses interesting questions;
the answers are important, since such transports in large measure will determine the nature of the
planet’s climate.

Low mass planets are of particular interest because according to theories of planetary for-
mation they have the best chance to have a rocky composition similar to that of Earth, Mars or
Venus. Relatively few planets with a mass of 10 Earth masses (0.03 Jupiter masses) or less have
been discovered, but there has been recent progress in this area. The planets discovered so far in
this range are all considerably more massive than Earth, and are therefore called Super Earths.
The left panel of Fig. 1.3 shows that a handful of Super Earths have been discovered with stellar
fluxes ranging from .25 that of Earth (yielding a too-cold planet) to 1000 times that of Earth
(yielding a planet far too hot. The closest to being ”just right” is Gliese 581c, with a flux of about
three times that of Earth. Would such a planet be habitable, or would it turn into a Venus? The
physics needed to answer such questions will be developed in Chapter 4.

The right panel of Fig. 1.4 gives an indication of the masses of planets that have been
discovered about stars having various temperatures. The stellar temperature is of interest to
climate since it determines the spectrum – the redness or blueness – of the starlight, which in
turn affects the absorption of starlight by various atmospheric constituents. Hotter stars also put
out more of the energic ultraviolet radiation, which can have a profound effect on atmospheric
chemistry. We see that a few low mass Super Earths have been found around class G or K stars,
but examination of the associated planetary data reveals that these planets are in close orbits and
receive several hundred times as much stellar energy as the Earth receives from the Sun. They
will unquestionably be extremely hot places, and unlikely to be able to sustain an atmosphere
or liquid water. There is, however, a small cluster of Super Earths orbiting very cool stars with
temperatures under 3700K. These stars are Main Sequence ”M-dwarfs.” They are very red, very
small, and very dim, but by virtue of their dimness planets in close-orbits can still have a chance
to be habitable. Moreover, dim stars like M-dwarfs have a long lifetime, and therefore provide
a stable environment for their planets. Gliese 581 is such a system, but it appears that the two
most Earthlike planets still miss being habitable – one likely to turn into a Venus if it has an
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Figure 1.4: Left panel: Scatter plot of orbital period (in Earth days) vs. the flux of stellar energy
impinging on the planet at the time of closest approach (the periastron). Right panel: Scatter plot
of the mass of the planets (in units of Jupiter masses) vs. the effective radiating temperature of
the host star.

ocean and the other likely to freeze into a Snowball. Part of the reason for interest in M-dwarfs
comes purely from detection technology. It is comparatively easy to detect low-mass planets in
close orbit around a low-mass star, and at the same time low-mass dim stars give a planet in a
close orbit a chance to be habitable. As time goes on, it is likely that a habitable world around
an M-dwarf will be discovered. As detection technology improves, the possibility for discovering
Earthlike habitable planets will expand to other spectral classes of stars.

Naturally, one is at this point intensely curious as to the composition of these planets,
whether they have water, and what their atmospheres (if any) are made of. Some information can
be inferred from planetary formation theory and theories of atmospheric evolution , but there is as
yet no great ability to determine atmospheric composition from observations. That will change in
the next decade or two, as satellite-borne instruments come online which will be able to determine
the spectrum of emission and reflection from extrasolar planets. The anticipated instruments will
only return a single spectrum averaged over the whole visible surface of the planet, but a great
deal can nonetheless be inferred about atmospheric composition from such data. Learning how
to make the most of this single-pixel planetary astronomy, in which the Earth would appear as a
pale blue dot (in Carl Sagan’s words) opens a whole range of Big Questions. Much of the same
radiative transfer used in calculating planetary climate bears on the interpretation of planetary
spectrum as well.

1.7 Digression: About climate proxies

1.7.1 Overview of proxy data

Instrumental records of climate – that is, records of measurements of temperature and other quan-
tities by scientific instruments – date back at most a few hundred years. The first accurate ther-
mometer was invented in 1654 by Ferdinando II de’Medici, and two hundred years passed before
anything like a global network of reliable temperature measuring stations began to become avail-
able. Written historical records of such events as frost dates, encounters with sea ice and depictions
of mountain glacier length provide some information about the climate of the past few millennia,
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but for the most part one must rely on climate proxies for information on what climate was doing a
century or more ago. A climate proxy is any measurable thing preserved in the geological record of
Earth or other planets, from which some aspect of climate can be inferred; to be useful, a climate
proxy must come with a chronology, that is, some means of telling what period the proxy dates to.
There is a vast and ever-improving array of climate proxies. We have encountered a few already.
For example, the existence of river networks on the surface of Mars tells us that at some time in the
past the surface of Mars must have been warm enough to support a liquid (probably water) flowing
for long distances along the surface; in this case, the chronology at the time of writing comes from
counting the number of craters superimposed on the features. Similarly, the existence of marine
sedimentary deposits and stromatolites during the Archean provides compelling evidence that the
Earth was warm enough to support open ocean water through much of its early history.

Some of the more intuitive kinds of proxies derive from plants and animals that live on
land, since physiology places certain constraints on the conditions in which various organisms can
grow or thrive. The presence of cold-blooded animals like crocodiles is a sure sign that winters
cannot have been much below freezing for extended periods of time. Some kind of plants require
tropical conditions to survive, while others require cooler conditions; even the shape of leaves
provides information about temperature. A great deal of this evidence is preserved in the fossil
record. Where there are trees, the width of tree rings provides a record of annual variations in
the temperature of the growing season (though it is sometimes hard to distinguish temperature
from rainfall effects). Land-based proxies are only available after the time at which a fairly diverse
ecosystem established itself on land. While the first primitive plants colonized land as early as
470 million years ago (in the Ordovician period), and the first plants with stem structures able to
conduct water appeared perhaps 430 million years ago (the Silurian period, a diverse land ecosystem
did not really get underway until the Devonian period, which began about 416 million years ago.
Once plants colonized land, animals in search of a free lunch followed not long afterwards.

One of the richest sources of information about past climates of the Earth comes from
material preserved in sea floor sediments. Sediment is laid down in layers like the pages of a book,
in which the history of Earth’s climate can be read. The Earth is a dynamic planet, and sea
floor is constantly being re-created at mid-ocean ridges, and likewise pulled down into the Earth’s
interior for recycling at subduction zones. For this reason, the deep-ocean marine sediment record
is mostly limited to the past 100 million years, and is rather sketchy for the first half of that period.
The oldest remaining deep-sea floor is about 180 million years old, and there is precious little of
that. Near-shore deposits on continental shelves, on the other hand, can be uplifted and preserved
for hundreds of millions, or even billions, of years. Many of the key marine deposits that tell us
about the climate of the Neoproterozoic (about 600 million years ago) are now high and dry in
Namibia, while others are found in Arctic Canada. These various deposits have a lot of individual
personality and are known to geologists by names such as the Acasta Gneiss, the Warrawoona
Formation, the Akademikerbreen or the Isua Greenstone Belt; we’ve met many of these already in
the preceding sections.

Numerous aspects of the sedimentary record have been used to infer past conditions, and the
ingenuity of paleoclimatologists is adding to the list all the time. Some sedimentary proxies involve
the physical structure of the sediments, and are independent of chemistry or biology. Diamictites
are a class of sediments known to be carried by land glaciers discharging into the ocean. They are
a sure sign of very cold conditions, since it is only in such cases that a glacier can survive to sea
level. Ice-rafted debris (IRD) is coarse material that can only be carried offshore by hitching a
ride on icebergs or sea-ice. Dropstones – individual stones the size of pebbles and larger which fall
with enough force to deform sediment layers – are a particularly striking form of ice-rafted debris.
Inasmuch as stones do not float, they present very convincing evidence for ice. Continental dust
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in sediments provides an indication of the strength of wind, since larger particles require stronger
winds to loft and transport them; the mineral composition of the dust can often mark where the
dust came from, and hence the direction of the wind. Surveying the species of fossil algae found
in sediments can provide information about the temperature of the layers in which the algae grew,
since some organisms require colder temperatures while other require warmer temperatures.

A great deal of information can be gleaned from the chemical composition of the ocean, and
of the microscopic creatures which dwell within it. Some chemical proxies do not rely on biology,
and others make use of organisms mainly as nearly passive recorders of the composition of the
ocean. Still other proxies are more intimately tied to biology, through the effect of temperature on
the rate at which an organisms makes use of one element in preference to another. For example, the
ratio of Magnesium (Mg) to Calcium (Ca) in corals and in the shells of certain micro-organisms is
dependent on the temperature at which the organisms grew. The Strontium-Calcium substitution
has been used similarly. Organic molecular proxies represent an important new source of data; it
has been discovered that certain kinds of micro-organisms produce long-chain organic molecules
with a somewhat variable chain-length which depends on the temperature at which the organism
grows. When these molecules are robust enough to be preserved in the sedimentary record, the
ratio of chain-lengths can be used to infer past temperatures. Alkenone and Tex-86 proxies fall
into this class. They are useful only over time spans for which organisms producing the molecules
exist, and can be presumed to have similar biochemistry to modern analogue organisms. Both
alkenones and Tex-86 have been used to probe climates lying many tens of millions of years in the
past, as well as more recent climates of the past few hundred thousand years.

If the chemical composition of a sedimentary sample has been altered by interaction with
ocean water at some time after the sediment was first formed, then the information the sediment
provides about past conditions is severely compromised. Post-depositional alteration is known as
diagenesis, and it is a problem that plagues interpretation of geochemical sedimentary proxies.
Paleoceanographers have had to become very clever sedimentary detectives in order to check for
the nefarious effects of diagenesis, particularly when dealing with samples more than a few million
years old. In some cases the existence of diagenesis has gone undetected for a decade or more, as
will be discussed later in connection with the problem of hothouse climates.

1.7.2 Isotopic proxies

The chemical properties of an element are primarily determined by the number of protons in
the nucleus (the atomic number, which also determines the configuration of the electron cloud.
Nucleii also contain neutrons, and atoms having the same atomic number can appear in forms
with different numbers of neutrons. These differing forms are known as isotopes of the element.
Isotopic proxies have proved to be a versatile source of information about past climates. Some
isotopes are unstable, and decay into other elements; these can be used as ”clocks,” to determine
when things happened. The original, and most famous, such application is radiocarbon dating,
which makes use of the decay of the form of carbon having a molecular weight of 14 (carbon-14, or
14C. Stable isotopes do not decay, and instead provide a tracer of past chemical reactions in which
the substance participated. For elements heavier than Helium the stable isotopic composition of a
planet is determined primarily by the synthesis of the elements in the supernova explosion which
gave birth to the material eventually incorporated into the Solar system. The isotopic ratio can
in some cases be further changed by the process of planetary formation. For example, oxygen
has three stable isotopes: 18O, 17O and 16O, the latter of which is by far the most common.
About 1 in 500 atoms of oxygen on Earth are 18O, which is nearly the same ratio as found in the
Sun and which presumably represents the composition of the primordial Solar nebula. 17O is less
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commonly used as a proxy because it is so much rarer than 18O (only 1 in 2500 oxygen atoms
on Earth), but variations in its composition are readily detectable with modern measurements,
and have important specialized uses. Hydrogen has two stable forms: Deuterium (D) which has a
proton and a neutron, and normal hydrogen (H) which has only a proton. About one hydrogen
molecule in 6500 occurring in Earth’s ocean water is D. This differs from the 1:1700 ratio in the
outer Sun, because Deuterium is destroyed by nuclear fusion in the Sun and in the early Solar
nebula; curiously, the composition of the outer Sun is nearly the same as Jupiter. The stable
isotopes of carbon are 13C and 12C, of which the latter is by far the more common. About 1
in 100 carbon atoms on Earth are 13C. The carbon isotopic system attracts particular attention
because carbon is the basis of organic chemistry – the stuff of life as we know it. Stable isotopes
of S, N , Ar and many other elements have proved useful as proxies. In fact, it is hard to think of
any measureable isotopic ratio that hasn’t proved useful as a proxy for some aspect of climate or
atmospheric composition.

The utility of isotopes as climate proxies derives from what they tell us about processes that
sort them out into different reservoirs. Isotopes of an element have nearly the same chemical and
physical behavior, but not exactly the same behavior. The subtle differences come about in part
because, at a given temperature, the molecules of the lighter isotopes have a higher typical velocity
than those of the heavier isotopes, since all molecules have the same mean kinetic energy at any
given temperature. Among other things, this means that lighter isotopic forms of a substance
evaporate more readily than heavier ones, so that the vapor phase of a substance is typically
depleted in heavy isotopic forms relative to the condensed phase with which it is in contact. We
will find this effect particularly useful in the interpretation of water isotopes, but a very similar
process applies to the gradual ”evaporation” of a planet’s atmosphere into outer space, and can
be used to constrain the proportion of atmosphere that has been lost in such a fashion.

The rate at which a given element or a molecule containing that element undergoes chemical
reactions also depends on the isotope involved. Other things being equal, heavier isotopes would
tend to react more slowly, because they have lower speeds and therefore lower collision rates with
other reactants than their lighter, nimbler cousins. However, there are more subtle effects involved
that can either enhance or retard reaction rates. Specifically, the difference in molecular weight
between isotopes can affect the characteristic vibration frequencies of molecule bonds, and this can
in turn affect the probability that colliding reactants will stick together. Very often, the degree
of preference for one isotopic form over another – the degree of fractionation occurring between
reactant pool and reaction product – depends on the temperature at which the reaction is taking
place. When this is so, the isotopic composition of the product provides a useful paleo-thermometer.
In Section 1.3 we stated that ”certain aspects” of the chemical composition of zircons constrained
the temperature of Hadean water with which the zircons were in contact; with this cryptic phrase,
we were in fact referring to the ratio of 16O to 18O in the Hadean zircons which, like all silicate
minerals, contain oxygen (their chemical formula is ZrSiO4). Similarly, it was the oxygen isotopic
ratio of cherts (later confirmed by silicon isotopic ratios) that was used to constrain Archaean
temperatures in Section 1.3. A problem with all such paleothermometers is that fractionation
is relative to the isotopic composition of the reactant pool, so that one needs to know the likely
composition of the reactant pool in order to infer temperatures from the reaction product (e.g. the
cherts or zircons), which are preserved long after the pool of reactants have been dissipated.

Biochemistry also has isotopic preferences. Photosynthetic Earth life (even of the sort
that doesn’t produce oxygen) prefers the lighter forms of carbon, so that organic material of
photosynthetic origin is enriched in 12C and depleted in 13C relative to the inorganic carbon
left behind. A record of the isotopic composition of inorganic carbon is preserved in carbonate
minerals (e.g. CaCO3) precipitated out and deposited on the ocean floor, with or without the
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help of shell-forming organisms. Organic material is directly preserved in sedimentary rocks such
as shales. For example, the organic material in the Isua shales is presumed to be of biological
origin because its carbon is isotopically light – enriched in 12C relative to the average composition
of carbon on Earth. Respiration – eating organic matter and combining it with oxygen to release
energy – does not fractionate carbon to any significant extent, so the isotopic signature imprinted
by photosynthesis is carried over to those of us creatures in the non-photosynthetic organic realm.

The simplest kind of isotopic fractionation to characterize is equilibrium fractionation. To
keep things concrete, we’ll illustrate the concept using oxygen isotopes. Consider two physically
or chemically distinct substances, each of which contains oxygen atoms. For example, the two
substances could consist of water in its vapor phase and water in its liquid phase. Alternately,
the two substances might be different chemical compounds containing oxygen, such as calcium
carbonate (CaCO3) and water (H2O), or silica (SiO2) and water; the latter pair leads to the
chert-based paleothermometer mentioned earlier. Each of the two substances will have some initial
ratio of 18O to 16O. Now imagine bringing the two substances into contact, whereupon the two
substances exchange heavier and lighter forms of oxygen, changing the initial ratios. After a very
long time, the isotopic ratios in each substance will reach equilibrium and stop changing. At that
point, we can define the equilibrium fractionation factor f1,2 via the relation

r1 = f1,2r2 (1.4)

where r1 is the ratio of 18O to 16O in the first substance after equilibrium has been reached, and
r2 is the corresponding ratio for the second substance. The fractionation factors differ for different
pairs of substances, but typically (though not invariably) exhibit the following characteristics:

• The fractionation factor is typically quite close to unity

• The fractionation factor deviates most from unity at low temperatures, and approaches unity
as temperature increases

• The deviation of the fractionation factor from unity increases as the contrast between the
masses of the two isototopes increases (e.g. more fractionation for 18O vs 16O than for 17O
vs 16O

For example, the oxygen in silica (SiO2) is isotopically heavy in comparison with the oxygen in
the water with which it is in equilibrium; the fractionation factor is 1.036 at 20C but falls to
1.018 at 100C. Similarly, oxygen in liquid water is isotopically heavy in comparsion to that in
the water vapor with which it is in equilbrium; in this case, the fractionation factor is 1.01 at
20C and falls to 1.005 at 100C. It is the temperature dependence of the fractionation that makes
it possible to use isotopic ratios as paleothermometers. Some kinds of fractionation appear to
operate in nearly the same way whether the reactions happen within organisms or inorganically.
This appears to be the case for carbonate precipitation, which fractionates in much the same
way regardless of whether it happens inorganically or in shell-forming organisms. Other forms of
fractionation, such as the fractionation of carbon isotopes in photosynthesis, are more inherently
biologically mediated, though even in such cases the fractionation factors tend to be similar across
broad classes of organisms sharing the same biochemical pathways.

Isotopic composition is usually described using δ notation, which is defined as follows. Let rA

be the ratio of the number of molecules of isotope A in a sample to the number of molecules of the
dominant isotope. Typically, rA will be a rather small number. Next let rA,S be the isotopic ratio
for a standard reference sample. Isotopic composition is invariably reported relative to a standard
because the analytical instruments currently in use cannot measure the absolute composition to
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very high accuracy, but they can measure the difference relative to a standard very accurately;
the standard is an actual physical substance, natural or manufactured, which can be put into the
analytical instrument and serve as a basis for comparison. The choice of standard is a matter of
convention, and there are various standards typically used in different contexts. For example, the
standard for oxygen and hydrogen isotopes in ice or water is usually taken to be VSMOW, which
stands for Vienna Standard Mean Ocean Water. The ratio of 18O to 16O in VSMOW is 1/498.7,
and of D to H is 1/6420; this approximates the mean present composition of water in the ocean.

Once one agrees upon a standard, the isotopic composition of a sample can be described in
terms of the quantity

δA ≡ rA − rA,S

rA, S
(1.5)

Thus, negative values of δ indicate that the sample is depleted in isotope A relative to the standard,
whereas positive values indicate that the sample is enriched. The δ value is usually expressed as a
per mil, or parts-per-thousand, value. For example, a δ value of .001 would usually be expressed
as 1 per mil or 1h. A difference of 1his often equivalent to a miniscule variation in isotopic
concentration, requiring high analytical precision to measure. For example, for the case of δ18O, a
1hdifference is equivalent to changing the ratio of 18O molecules to 16O molecules by .001 · 1

498.7 ,
or a hair over 2 parts per million. Deuterium (D) is even tougher. For deuterium, a difference of
1hamounts to a change in the D to H ratio of only 0.16 parts per million, though the challenge is
offset by the fact that fractionation in the D/H system is considerably stronger than fractionation
in the 18O/16O system owing to the lesser relative mass contrast in the latter case.

Carbonate minerals (e.g. CaCO3 or MgCO3) are important recorders of the oxygen and
carbon isotopic composition of past environments. For carbonates, the isotopic composition is
usually reported relative to the PDB standard, named after a mineral powder made from a natu-
rally occurring fossil carbonate (the ”Peedee Belemnite”) The physical powder standard no longer
exists, so it has been supplanted by a synthetic equivalent, known as V PDB. It is important
to keep the standards in mind when interpreting the isotopic literature. Oxygen isotopes occur
in both carbonate and water, and so can be reported relative to either the V SMOW or V PDB
standard. The conversion between the two is given by

δ18O(V SMOW ) = 1.03091δ18O(V PDB) + 30.91 (1.6)

A useful rule of thumb to keep in mind when interpreting oxygen isotopes in marine carbonates is
that a carbonate reading zero relative to V PDB would be in equilibrium with water having zero
δ18O(V SMOW ), if the carbonate formed at a temperature of around 18C. This means that a
carbonate δ18O(PDB) of ”around” zero goes along with the waters in which they formed having
δ18O(V SMOW ) of ”around” zero. Later, we’ll clarify just what we mean by ”around,” and how
that depends on temperature.

Having introduced the δ notation and the V PDB standard, we are now in a position to get
more quantitative about the things to be learned from the stable isotopes of carbon preserved in
carbonates. The quantity of interest is δ13C, reported relative to the V PDB reference. Carbon
dioxide is cooked out of carbonates in the interior of the Earth, and outgases from volcanoes,
subduction zones and the mid-ocean ridge with δ13C ≈ −6h. In a steady state, the flux of carbon
in this carbon dioxide is balanced by the burial of carbon in the form of inorganic carbonates
(e.g. CaCO3 and organic carbon (schematically CH2O). In the long run, most of this burial is in
sea-floor sediments, since whatever forms on land tends to eventually get washed into the ocean.
Note that even carbonate precipitated biologically in the form of shells of organisms is considered
inorganic material, and acts pretty much (though not exactly) like inorganically precipitated car-
bonate. There are some kinds of recently evolved plants that use photosynthetic pathways that
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fractionate carbon very little, but for the most part, photosynthetically produced organic carbon
has δ13C values that are about 25hlower than that of the carbon dioxide reservoir from which the
photosynthetic organisms make their substance. For example, CO2 in the atmosphere today has
δ13C ≈ −8h, while land plants have δ13C values running from -32hto -25hand marine organic
carbon has δ13C ≈ −25h. Fossil fuels, which are made from ancient land plants (in the case of
coal) or marine organisms (in the case of oil) have δ13C ≈ −25h.

If forg is the fraction of carbon which is buried in the form of organic carbon, δo is the δ13C
of carbon outgassed from the Earth’s interior, δorg is the δ13C of the organic carbon buried and
δcarb is the δ13C of the carbonate carbon buried, then mass balance implies

δo = forgδorg + (1− forg)δcarb (1.7)

If data from both organic and carbonate sediments are available, this formula can be used directly
to infer forg. It is instructive, however, to make use of the intrinsic fractionation between inorganic
carbon and photosynthetically produced organic carbon to infer the isotopic compositions of the
two burial fluxes as a function of forg. Note that because photosynthetic fraction is relative to
the composition of the inorganic carbon pool, it is incorrect to assume that δorg ≈ −25h. It
could be considerably heavier, if the inorganic pool has very positive δ13C. Let’s consider two
limiting cases. Suppose that forg ≈ 1, so that nearly all of the carbon outgassed from the Earth’s
interior is intercepted by photosynthesis and buried as organic carbon. In that case, mass balance
requires that δorg ≈ δo ≈ −6h. This can only happen if the inorganic carbon pool consists of
isotopically heavy carbon with δ13C ≈ (−6 + 25)h = 19h. Since the carbonate that precipitates
from an inorganic carbon pool tends to be isotopically heavier than the pool itself, the trickle of
carbonate precipitated in this situation will have δ13C in excess of 19h. The precise value depends
on aspects of ocean chemistry we will not pursue here. In the opposite limit, when forg ≈ 0 and
there is little organic carbon burial, then δcarb ≈ δo ≈ −6h. The inorganic carbon pool this
carbonate precipitates from is somewhat isotopically light compared to the carbonate itself, and
the organic carbon fractionates relative to that value, yielding δorg < (−6− 25)h = −31h. The
typical situation over the past two billion years has been for δcarb to be somewhat positive, between
2hand 5h, while δorg hovers around -22h. There are periods, however, when carbon isotopes
undergo considerable excursions from the typical situation. These carbon isotope excursions provide
an important window into big events in the carbon cycle.

The above picture applies only when the carbon cycle is in a steady state. When any part
of the carbon cycle is significantly out of equilibrium – for example, when one is building up a new
pool of stored organic carbon in land plants and soils – the simple input-output isotopic calculation
no longer works. One must then do a detailed accounting of the flows of carbon between the various
reservoirs involved, and the attendent isotopic fractionations. This can be a very intricate process,
especially since the fractionations involved are generally temperature dependent. There are other
important aspects of the isotopic carbon cycle we have swept under the rug, such as the important
information that can be gained from vertical gradients of δ13C in carbonates.

There is another biological process that can leave a distinct mark on the carbon isotopic
record, namely methanogenesis. When there is oxygen around, organic matter generally gets
decomposed into CO2 by respiration. In anaerobic environments, methanogens get the goodies
instead, and turn organic matter into CH4. This is a multi-step process, each step of which
fractionates carbon. The result is CH4 which is much lighter isotopically than the organic feedstock
from which it was produced. Biologically produced methane today has δ13C values on the order
of -50h. When the atmosphere-ocean system is rich in oxygen, as has been the case for the past
half billion years, methanogenesis plays a very minor role in the carbon cycle and usually leaves
little imprint in the isotopic record. A possible exception to this general rule may occur as a result
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of gradual accumulation of large amounts of methane in the form of exotic ices called clathrates,
which can form in ocean floor sediments and under arctic permafrost laters. If some event occurs
which suddenly releases this stored methane into the atmosphere or ocean, the isotopically light
methane quickly oxidizes into CO2 which works its way into the carbonates. The net result is a
negative carbonate carbon isotope excursion, the magnitude of which tells us something about the
quantity of methane released relative to the net carbon in the ocean-atmosphere system.

At present, the arsenal of climate proxies is much more limited for other planets than it is
for Earth. Biologically mediated proxies are obviously not in the cards for planets that seem to
have no biology, but many of the abiological proxies used on Earth would be equally useful on
other planets; cherts on Mars would provide much the same kind of information as cherts have
provided on Earth. The use of these chemical proxies is limited primarily by the weight and power
consumption of analytical instruments needed to carry out some of the analyses that are typically
done on Earth materials. The same constraint applies to many of the means of determining
chronology based on radioactive decay. Such techniques can be applied to other planets with a
preserved geological record (notably Mars), but must await sample return missions. Meanwhile, a
considerable amount has been accomplished by remote-sensing from planetary orbiters, and from
low-power instrumentation on landers. The landforms of Mars have been imaged in great detail,
and constitute a proxy for past climates with regard to occurence of water and glacial activity.
The minerology of the surface can be determined by a range of remote-sensing techniques, so a
fair amount is known about the occurence of clay minerals (a signature of water and weathering)
in the ancient crust of Mars, and other minerals such as the iron compound hematite also tell us
something about the aqueous environment of Early Mars. On all planets, a study of the isotopic
composition of atmospheric gases (possible by in situ and remote spectroscopic means) provides
valuable information on the source of the atmosphere and how much has been lost over time,
insofar as lighter isotopes escape to space more readily than heavy isotopes. With sample return
missions and improved robotic exploration, the future promises a rich expansion in planetary proxy
studies, not least the prospect of drilling the Martian polar glaciers to see what climate mysteries
they record.

1.7.3 Hydrogen and Oxygen isotopes in sea water and marine sediments

We will turn our attention now to the isotopes of hydrogen and oxygen contained in water and
in sediments precipitated from the water column. We’ll learn what the concentration of these
isotopes tells us about the volume of glacier ice and the temperature of various parts of the ocean.
”Normal” water is H16

2 O, but other isotopes of hydrogen or oxygen can substitute for the most
prevalent isotopes, leading to various forms of heavy water, notably HD16O and H18

2 O.

At any given temperature light molecules, on average, travel with higher velocity than heav-
ier molecules. This implies that during evaporation, the lighter isotopic forms of water evaporate
more readily than the heavier forms, leading the vapor to be enriched in light water and depleted
in heavy water relative to the liquid reservoir. Furthermore, when water vapor condenses into
liquid or ice, the heavier forms condense more readily because the slower moving molecules can
more easily stick together without bouncing off each other. In consequence, the rainfall is enriched
in heavy forms relative to the vapor in the air, while the vapor left behind in the air is further
enriched in the light forms and further depleted in the heavy forms. This is a form of distillation,
very similar to the process by which one makes brandy from wine (or moonshine from fermented
corn mash). Alcohol is more volatile than water, so the vapor in contact with heated wine is
enriched in alcohol relative to the liquid; if part of the vapor cools and condenses, the water con-
denses out preferentially, leaving a potent essence at the end of the still if the remaining vapor is
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Figure 1.5: Sketch showing how the growth of ice sheets on land affects the isotopic composition
of ocean water. The water vapor which evaporates from the ocean is enriched in lighter forms
of water, and becomes more isotopically light as the heavy forms of water preferentially rain or
snow out before the remainder is deposited on the glacier. This process systematically transfers
isotopically light water to the glacier, leaving the ocean isotopically heavy.

then condensed separately.

The way the distillation process affects the isotopic composition of sea water is sketched in
Fig. 1.5. Let’s suppose that the ocean starts with δ18O of zero relative to VSMOW. Water will
evaporate into the air until the air becomes saturated with water vapor (a concept that will be
made precise in Chapter 2). Since heavy molecules evaporate less readily than light molecules, the
water vapor will be depleted in 18O relative to the ocean – in other words, it will be isotopically
light. More precisely, the ratio of 18O to 16O for the water vapor in the air will be less than the
ratio of the original ocean water, leading to a negative δ18O for the vapor. The amount of depletion
depends weakly on temperature. At 273K, the water vapor δ18O is shifted by -11.7 hrelative to
the ocean. At 290K the shift is -10.1hand at 350K the shift is -6.0h. This reduction in isotopic
contrast between reservoirs as temperature increases is typical of almost all isotopic fractionation
problems. Because the amount of water stored in the form of water vapor in the atmosphere is
utterly dwarfed by the amount of water in the ocean, the selective removal of light isotopes makes
the ocean only very, very slightly isotopically heavy. But what if we removed the atmosphere’s
water vapor, sequestered it in a glacier on land, and repeated the process many times over until a
substantial fraction of the ocean water had been transformed into an isotopically light glacier? In
that case, the systematic removal of large volumes of isotopically light water from the ocean would
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leave the ocean water isotopically heavy by a significant amount – it would have a significantly
positive δ18O. Thus, the degree of to which the ocean is enriched in isotopically heavy forms of
water tells us how much ice has built up on land. As ice volume becomes greater, the δ18O (or
similarly, δD) of the remaining ocean water becomes more positive. As an example, let’s suppose
we build an ice sheet by removing 200m depth of water from an ocean with a mean depth of 4km,
assuming the glacier to be built from vapor with δ18O = -10h. If δi is the δ18O of the ice and δo

is that of the ocean water, then conservation of molecules implies that 200δi + (4000− 200)δo = 0,
if the ocean started with δ18O = 0. From this we conclude δo = .526h.

In fact, for the reasons sketched in Fig. 1.5, the water that eventually snows out to form
glaciers is much more isotopically light than the -10hvalue one might expect from just looking at
the vapor in equilibrium with ocean water. The initially evaporated water vapor may have δ18O =
-10h, but on the way to the cold polar regions, some of that water will rain out back into the
ocean, and the condensed water is isotopically heavy relative to the vapor, since heavy species
condense more readily. That means that each time some atmospheric water vapor is lost to rainfall
or snowfall back into the ocean, the vapor left behind becomes lighter. The precise extent of the
additional lightening by the time the snow eventually falls out on a glacier depends on the amount
of water lost on the way, which is in turn a function of the temperature difference between where
the water was picked up from the ocean and where it was dropped on the glacier. Over the past
100,000 years, the δ18O of the snow falling on Greenland has varied from -42 hin the coldest times
to values around -35htoday. Antarctic ice is somewhat isotopically lighter than Greenland ice,
and has δ18O values ranging from -40hto -55hdepending on location and age of the ice. Because
of the additional fractionation on the way to the pole, the formation of the glacier would leave the
ocean much more enriched in heavy isotopes than our previous estimate suggested. For glaciers
having isotopic compositions comparable to the present ones, removing 200m of ocean to build
glaciers would leave the ocean enriched by about +2h, rather than a mere .526h. The preceding
discussion also shows that in order to translate the δ value of the ocean into an ice volume, one
needs some estimate of the isotopic composition of the glaciers being formed. For the present
glaciers, this can be determined by drilling into the ice, but for past ice that no longer exists one
must rely on modelling.

So, if we could go back in time and grab a bucket of sea water, measuring its isotopic
composition would tell us the volume of ice on the Earth, and this would tell us much about how
cold the planet was. Wouldn’t it be awfully nice if there were some way to do that?

1.7.4 Forams to the rescue

As it happens, Nature has provided a handy way of determining the isotopic composition of
past ocean waters, via the good works of single-celled shelly amoeba-like organisms known as
foramanifera, nicknamed forams (see Fig. 1.6). These creatures build distinctive calcium carbonate
(CaCO3) shells which record the state of the water in which they grew. Because the shells have
such diverse and unmistakable shapes, it is easy to recognize and select out the species which live
at the the depth level one wishes to investigate. The two principle types of forams are benthic
which live near the sea floor, and planktonic which require light and live near the ocean surface.
The shells of both types wind up in tidy layers in the marine sediments, allowing one to read the
state of the ocean in both depth and time, from a single sediment core. Benthic forams appear
in the fossil record as early as 525 million years ago, but their use as paleoclimate indicators has
been primarily restricted to the period over which significant portions of seafloor have survived –
approximately the past 70 million years.
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Figure 1.6: The shell of a departed benthic foram (Cibicidoides Robertsonianus. The specimen is
about one half millimeter in diameter.

Forams are not just passive recorders of the isotopic composition of ocean waters, however.
As is the case for any chemically distinct pair of reservoirs in contact, the oxygen in foram carbonate
is systematically fractionated relative to the isotopic composition of sea water. There is some
dispute as to the extent to which this fractionation can be thought of as equilibrium fractionation,
but the fractionation factors behave much like inorganic equilibrium fractionation factors and
do not differ greatly amongst species. Carbonate prefers the heavier forms of oxygen, and at a
temperature of 18C, the 18O to 16O of precipitated carbonate is greater than the ratio for the
water in which it precipitates by a factor of about 1.03. In other words, carbonate is about
30henriched in 18O compared to the water with which it is in equilibrium. As is typically the
case for equilibrium fractionation, the degree of enrichment increases as temperature decreases.
The change in fractionation with temperature is usually expressed as a paleotemperature equation.
Many paleotemperature equations have been given, based on laboratory-cultured organisms, on
field observations of recently living forams, and on laboratory measurements of inorganic carbonate
precipitation. All give similar results, though the differences are important if one is interested in
high accuracy. A general feel for the numbers is adequately given by the following paleotemperature
equation, which applies to the benthic foram Uvigerina.

T = 17.97− 4.0 · (δc(V PDB)− δw(V SMOW )) (1.8)

where T is the temperature in degrees C at which the foram grew, δc(V PDB) is the measured
δ18O of the foram carbonate reported relative to V PDB, and δw(V SMOW ) is the δ18O of the
water in which the foram grew, reported relative to V SMOW . Both δ values in the above equation
are to be expressed in permil units.

The temperature dependence of foram fractionation is a two-edged sword. On the one hand,
the temperature dependence allows forams to be used as paleothermometers. On the other hand,
the temperature dependence means it is hard to disentangle ice-volume effects from temperature
effects. According to Eq. 1.8, a δ18O variation in foram carbonates of 2hcould represent an
temperature change of 8K where the forams grew, or instead a change of 2hin the water in
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which the forams grew – corresponding to an ice volume change equivalent to roughly 200m of sea
level. The use of benthic forams mitigates this ambiguity to some extent, since the deep ocean
temperature is much more uniform than surface temperature. This is so because the deep ocean is
filled with waters that are created at the coldest parts of the surface ocean, typically located near
the poles. When the climate is in a state having ice at one or both poles, this temperature hovers
around the freezing point of sea water, whence the benthic oxygen isotopes primarily reflect ice
volume rather than temperature – though the temperature effect is still by no means negligible.
A 2K variation in deep ocean temperature, which is not implausible even in icy conditions, leads
to about a 0.5hvariation in the δ18O of carbonates, which if attributed instead to sea water
composition would translate into an ice volume variation equivalent to about 50m of sea level. At
the other extreme, when the climate is in a state without ice at either pole, the isotopic composition
of ocean water itself can be considered nearly fixed, and the benthic foram isotopes provide an
indication of the polar temperature, regardless of where the sediment core is actually drilled. In
this case, a 2hincrease in benthic foram δ18O would indicate an 8K warming of polar temperature.

Benthic forams thus provide a valuable overall indicator of the state of the climate, giving
an indication of polar minimum temperature in ice-free climates, and ice volume in icy climates.
Since greater ice volume generally goes with a colder climate, and both high ice volume and low
temperature make the δ18O of foram carbonate more positive, high benthic foram δ18O indicates
a cold climate while low benthic foram δ18O goes along with a relatively warm climate. In ice-
free climates, planktonic forams can be used to estimate surface temperature, but in icy climates
the need to subtract out the ice volume effect makes it hard to get accurate surface temperature
estimates by this means.

Forams also preserve other chemical signatures that are useful in reconstructing the past
state of the climate system. Notably, they provide a record of the δ13C of inorganic carbon of the
ocean. Abiologically precipitated sea floor carbonates, or carbonates not associated with individual
microfossils, also do this, but the additional depth information available by using benthic vs.
planktonic forams provides valuable information about the state of the oceanic carbon cycle. The
use of fractionation as a paleothermometer is not limited to isotopes. Notably, magnesium (Mg)
substitutes for calcium (Ca) in foram shell carbonates, to an extent that depends on temperature;
hence the Mg to Ca ratio in foram shells can be used as a paleothermometer 4. As with oxygen
isotopes, the fractionation is relative to the composition of sea water, but the Mg to Ca ratio
of ocean water is not affected by formation of glaciers, and hence evolves relatively slowly over
geologic time. For this reason, magnesium-calcium paleothermometry has become a crucial tool
for probing the past few million years of climate history, and the tool is being extended farther
backward as understanding of the longer term evolution of the oceanic Mg to Ca ratio improves.

1.8 The Proterozoic climate revisited:Snowball Earth

With a few more tools at our disposal, we once more pick up the thread of Earth’s climate history,
starting with a more detailed look at certain aspects of the Proterozoic – the geological eon that
extends from 2.5 billion years ago to 543 million years ago, and is subdivided into the Paleo- Meso-
and Neo- Proterozoic, in order of decreasing age. From now on, we will have increasing need to
refer to the various subdivisions of the geological time scale by name, so these are summarized in
Fig. 1.7.

4Magnesium-calcium paleothermometry can also be used with cores drilled into corals. The growth zone of corals
has a distinct depth preference, which has proved particularly useful in estimating ocean surface temperature
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Figure 1.7: The geological time scale. Numbers on the scales represent millions of years before
present. The entire span of time before the Phanerozoic is also known as the Precambrian.
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So far we have not said much about continents and continental drift. Continents consist
of light material that has floated to the outer portions of the solid Earth and been incorporated
into the crust. This material is too buoyant to be subducted into the interior of the planet to
any significant degree, so once continental material had completely segregated, it remained at the
surface as a kind of scum resting atop the churning cauldron of Earth’s interior fluid motions. The
continental material is constantly being pushed around, broken up and re-arranged in a process
known as continental drift. The Earth is the only planet in the Solar System that has continents
in this sense, but it is likely that extrasolar rocky planets of a sufficient size to retain the heat
that drives internal motions, and having a surface temperature similar to Earth, would also exhibit
the dichotomy of drifting continents vs. areas of rapidly recycled mantle material (analogous to
Earth’s sea floors). It is at present unresolved whether a water ocean is necessary to maintaining
this state of affairs. That is indeed one of the Big Questions of planetary science, but it is not one
which we will take up in this book.

Continents are important to climate for three main reasons: They are a platform upon
which polar glaciers can form; They are the primary sites of the silicate weathering reaction that
governs atmospheric CO2, and the amount of weathering is strongly affected by the continental
configuration; They affect the geometry of ocean basins, and hence the ability of oceans to transport
heat from one latitude to another. In addition, they provide distinct habitat for novel forms of
life, though they were not colonized to any great degree (if at all) until land plants evolved in the
late Ordovician and early Silurian.

There is not enough preserved continental crust to get a clear idea of the distribution of the
continents until the very end of the Proterozoic. Geophysical modelling and indirect geochemical
evidence has lead to a prevailing belief that the total volume of continental material was similar to
the present volume throughout the Proterozoic, but this is not a very well settled area of geophysics.
By the close of the Proterozoic, however, the picture of the distribution of continents begins to
clarify; we will begin showing maps of paleogeography when we come to discuss that time.

The Proterozoic was the Age of Microbes. Indeed, in terms of the functioning of the biogeo-
chemical cycles needed to sustain life, we are all still basically the guests of the prokaryotes, but up
until the very end of the Proterozoic single-celled organisms had the world to themselves, with the
more complex eukaryotic form of microbial life making its appearance roughly midway through
the Proterozoic. The Proterozoic was above all a time of adjustment of biosphere and climate
to the massive changes wrought by oxygenation of the atmosphere and ocean. It is a matter of
current debate as to whether the oxygenation began in this eon because oxygenic photosynthesis
only evolved at this time, or because other factors kept photosynthetic oxygen from accumulating
earlier; be that as it may, the oxygenation occurred in fits and starts throughout the Proterozoic,
and atmospheric oxygen levels probably reached values comparable to modern ones by the close of
the eon. One effect of oxygenation we have already noted is that it is likely to have reduced the
importance of CH4 as a greenhouse gas, with CO2 (aided by water vapor) becoming increasingly
dominant. More speculatively, oxygenation could have changed the abundance of other greenhouse
gases that could conceivably have been significant in the anoxic atmosphere, such as N2O and SO2.
The nature of this greenhouse turnover, and the extent to which it constituted a habitability crisis
for our planet, is another of the Big Questions. In Chapter 4 we’ll learn how to evaluate the relative
importance of the various greenhouse gases. Oxygenation would have also sharply limited the pos-
sibility for H2 to accumulate in the atmosphere, which would have consequences for methanogenic
ecosystems that used H2 and CO2 as a feedstock.

Oxygenic photosynthesis turns CO2 into O2 and organic carbon, represented schematically
as CH2O. In order for the oxygen to accumulate, the organic carbon produced by photosynthesis
must be buried before it can be re-oxidized by other bacteria, which would just take the free
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oxygen back out of the system and turn it back into CO2. For this reason, the evolution of oxygen
is intimately tied in with the carbon cycle. Since organic carbon is isotopically light compared to
the carbon in CO2 outgassed from the interior of the Earth, the long term evolution of δ13C in
carbonates gives us a window into the carbon cycle, and a good overview of what is going on in the
Proterozoic. As noted earlier, when the carbon cycle is approximately in a steady state, the δ13C
of carbonate is driven more positive as the proportion of organic carbon burial to total carbon
burial increases. One must be cautious about this interpretation, however, since the carbon cycle
is thrown wildly out of equilibrium in the course of the Snowball episodes that constitute the most
dramatic features of Proterozoic climate.

With regard to oxygenation, however, organic carbon burial is not the whole story. Various
compounds of sulfur also play a key role in the cycling of oxygen through the Earth system; there
is evidence that the role of the sulfur cycle is much more prominent in the Proterozoic than during
later times. Bacteria are clever, and have ways of oxidizing organic matter that don’t use up free
O2. In a process called sulfate reduction, certain bacteria can react the sulfate ion (SO−−

4 ) with
organic carbon to produce bicarbonate (HCO−

3 ) and the stinky rotten-egg gas hydrogen sulfide
(H2S), which reacts with iron oxides and a little bit of free oxygen to produce water and the
mineral pyrite (FeS2). If the pyrite is then buried without being oxidized further, the net process
turns organic matter into mineral carbonate while leaving much of the O2 liberated by oxygenic
photosynthesis in the atmosphere/ocean system. Precisely how much is left in the atmosphere and
ocean depends on where the oxygen in sulfate and iron oxides comes from, but the net result is
that pyrite burial liberates oxygen in a way that doesn’t show up in the carbon isotope record.

The participation of sulfur in a variety of reactions involving oxygen makes the stable iso-
topes of sulfur – 32S, 33S, 34S and 36S, of which the first is dominant – a key source of information
about past behavior of oxygen. By comparing the degree of fractionation for the three minor
isotopes, one can get additional information. One form of fractionation is mass-independent frac-
tionation (MIF), which is nearly the same for all three minor isotopes. This kind of fractionation
is believed to be produced only in photochemical reactions involving high energy ultraviolet light,
and photochemical models of the atmosphere indicate that mass-independent sulfur fractionation
can’t be preserved in the sedimentary record unless the atmospheric oxygen concentration is ex-
tremely low – 10−5 of the present concentration or less, according to current estimates. It is the
sulfur MIF proxy that tells us that Archaean oxygen are nearly zero; other oxygen proxies only
require that Archaean oxygen be below 1% of present atmospheric concentration 5.

The more conventional mass-dependent sulfur fractionation is mediated by sulfate-reducing
bacteria. The fractionation nearly disappears when sulfate concentration in ocean water is low, so
a strong mass-dependent sulfur fractionation indicates both high sulfate concentration and strong
productivity of sulfate-reducing bacteria. An increase in sulfate concentration, in turn, is generally
taken as indicative of a rise in atmospheric oxygen, since that permits more oxidation of pyrite into
sulfate on land. Once oxygen builds up to the point that at least near-shore bottom waters become
oxygenated, a host of additional bacterially-mediated sulfur reactions, called disproportionation
reactions become possible, and these provide additional means of producing sedimentary sulfides
(e.g. pyrite) that are isotopically light in sulfur. The interpretation of mass-dependent sulfur
isotope fractionation is an exceedingly complex subject, which is likely to remain in a considerable
state of flux for some time to come.

The proxy record shows a great deal of activity towards the beginning of the Proterozoic
(during the Paleoproterozoic), and also towards the end of the Proterozoic (in the later parts of the

5The atmospheric chemistry models upon which this interpretation of the sulfur MIF is based rest on somewhat
shaky assumptions, however.
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Neoproterozoic). In between lies a billion-year period that has sometimes been called ”the most
boring period in Earth history.” During this Big Yawn, which stretched from about 1.8 billion
years ago to 800 million years ago, carbonate δ13C held steady near 0h, indicating steady organic
carbon burial. Mass dependent sulfur isotope fractionation implies oxygen levels of around 10%
modern concentrations during this period. There is no indication of any significant glaciation.
Eukaryotes arose towards the beginning of the Big Yawn, but appeared to have little effect on
biogeochemical cycling or climate evolution – unless perhaps they were somehow the cause of the
long period of climate stability. It would not be surprising if closer study eventually revealed more
features of interest in this period, but at this point we’ll turn our attention to the more manifestly
dramatic doings at the beginning and end of the Proterozoic.

All lines of evidence point to a Great Oxidation Event at the beginning of the Proterozoic.
Preservation of mass-independent sulfur fractionation in sediments ceases abruptly between 2.45
and 2.3 billion years ago, and is never seen again throughout the rest of Earth history. A hiatus in
banded iron formations begins at about this time. It is estimated that the oxygen content of the
atmosphere soared to values well in excess of 1% of the present level but crashed back to lower levels
afterwards, as witnessed by a transient reappearance of banded iron formations; the peak value
in the event is at present not well constrained. A subsequent increase in mass-dependent sulfur
isotope fractionation preserved in the sediments is indicative of an increase in sulfate concentration
in the ocean, most likely associated with an increase of oxidation of pyrite on land. Based on this
evidence and disappearance of banded iron formations, it is estimated that oxygen levels in the
atmosphere recovered to somewhere around 10% of present atmospheric concentrations around 1.7
billion years ago, and stayed there until 700 million years ago when there was a further oxygenation
event.

The Paleoproterozoic is characterized by wild swings in the δ13C of carbonates. Around the
time of the Great Oxygenation event, δ13C has a major positive excursion, reaching values as high
as 10 hbefore eventuallly subsiding to the lower values characteristic of the middle Proterozoic.
This indicates a major transition in the carbon cycle, most likely an increase in the proportion of
organic carbon burial. It is very suggestive of a take-off of oxygenic photosynthesis, but whether
the cause is evolutionary, ecological or a matter of factors that allow better burial of carbon is
a matter of dispute. There are several major glaciations within the Paleoproterozoic, of which
one – the Makganyene alluded to earlier – was a Snowball event in which ice reached tropical
latitudes. The Makganyene Snowball occurred within the interval between 2.32 and 2.22 billion
years ago, and fine-scale examination of arguably synchronous glacial deposits in the Duitschland
formation (Transvaal, S. Africa) indicates extreme carbon isotope excursions associated with major
Paleoproterozoic glaciations: Carbonate δ13C was around 5 hbefore the glaciation, then dropped
to zero or even negative values as the glaciation progressed, recovering slowly afterwards. We’ll
be able to probe similar features in more detail in connection with the Neoproterozoic Snowballs.
The Paleoproterozoic presents us with a puzzle whose pieces include oxygen, the effect of oxygen
on greenhouse gases, the carbon cycle, and glaciation. Figuring out how these pieces fit together
is one of the Big Questions.

The Neoproterozoic has many features in common with the Paleoproterozoic. The extreme
carbonate carbon isotope excursions which had been dormant for so long resume in the Neopro-
terozoic. There are several major glaciations during the Neoproterozoic, and two of these were
Snowball events in which ice reached tropical latitudes. The more recent of the two Snowballs is
the Marinoan event, which occurred about 640 million years ago; the older is the Sturtian, centered
on 710 million years ago. Neoproterozoic Snowball-related geological formations exhibit a distinc-
tive sequence of events. The scene starts with high carbonate δ13C, up to 5h, which is in fact
higher than the modern value and indicative of a greater proportion of organic carbon burial than
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is the case at present. Then, the δ13C drops, falling to zero or even negative values. At some point
in this decline, one sees diamictites and other glacial deposits. The δ13C continues to drop, and
above the glacial deposits one finds cap carbonates – very unusual carbonate features that are be-
lieved to require very high deposition rates from waters highly supersaturated in carbonate. In the
carbonates overlying the glacial deposit, the δ13C becomes negative, typically aroung -5hwhich
is about the value for abiotic carbon outgassing from the Earth’s interior. The δ13C gradually
recovers to positive values over a long (but somewhat unconstrained) period of time afterwards. A
particularly clear depiction of this sequence of events is given in the review by Hoffman and Schrag
listed in the Further Readings for this chapter.

However, not all major carbon isotope excursions are associated with Snowball events. In
fact, the greatest carbon isotope excursion in Earth history – the Shuram excursion – sets in grad-
ually after a conventional glaciation which is thought to reach only to midlatitudes (the Gaskiers
glaciation). The Shuram excursion brings the carbonate δ13C all the way down to -12 h. There
is no known process that could bring the carbonate δ13C so far below the mantle outgassing value
if the carbon cycle is in equilibrium. Indeed, the δ13C is so implausibly low in the Shuram that
it was long thought to be an artifact of diagenetic alteration. The Shuram is an enigmatic event
– indeed one of the Big Questions. Current thinking has it that the Shuram is associated with a
transient reorganization of the carbon cycle, in which a large isotopically light pool of suspended
organic carbon in the ocean is oxidized and deposited as carbonate.

In fact, a lot is going on with oxygen across the Neoproterozoic, though it is a bit hard to
determine what, where and when. What is certain is that oxygen must have been high – even
near present levels – right down to the ocean bottom by the end of the Neoproterozoic, since
bottom-dwelling animals appear in the fossil record by this time, and it is unquestionable that
such creatures require a great deal of oxygen. At the other side of the Neoproterozoic, around 700
million years ago, there is further evidence of oxygenation, in that a sharp rise in mass dependent
fractionation in sedimentary sulfides indicates the expression of sulfur disproportionation reactions,
which indicates an oxygenation of at least some of the bottom waters. Another important clue
as to what is going on is the reappearance of banded iron formations in connection with the
Neoproterozoic Snowball events, suggesting that the ocean once more went anoxic, most plausibly
as a result of global ice cover shutting down photosynthesis.

A very Big Question is why all this excitement suddenly resumed after nearly a billion years
of stasis.

The Snowball events of the early and late Proterozoic are some of the most dramatic events
of Earth history. We have used the term ”Snowball” to refer to any glaciation where there is
evidence of glaciation at tropical latitudes, but it is a matter of considerable debate whether the
oceans were indeed nearly completely frozen over all the way to the equator during these events.
Sometimes the term Hard Snowball is used to refer specifically to a state with near-total ice cover.
A Big Question of climate physics is whether it is possible to cool down the planet enough to
yield land-based ice sheets discharging into the tropics, without also freezing over the tropical
ocean completely. This requres an understanding of ice-albedo feedback, which will be developed
at several places throughout the book. However, it also involves ocean heat transports (which are
good at melting ice) and glacier dynamics, which for the most part are subjects that will be left
for another time and place.

The Snowball phenomenon is pregnant with Big Questions, the most obvious of which are:
How do you get in? And how do you get out? And if your planet does succumb to a global
Snowball, how long does it take to get out again? Is it a matter of centuries, millions of years
or billions of years? On Earth, the upper limit set by the geological record for the duration of



44 CHAPTER 1. THE BIG QUESTIONS

Neoproterozoic snowballs is about 20 million years, and the duration could well have been shorter.
However, without a clear understanding of the nature of the event, it is hard to determine whether
we just got lucky or whether the event could have lasted much longer.

Most theories for the entry into a Snowball involve the drawdown of whatever greenhouse
gas had previously been maintaining the planet’s warmth – usually CO2 and CH4 in some com-
bination. Various hypotheses include methane destruction by oxygen, weathering enhancement
triggered by catastrophic methane release from sediments, weathering enhancement due to conti-
nental configuration or production of weatherable rock by massive volcanic eruptions, and (more
speculatively) drawdown of CO2 through runaway photosynthesis and oxygenation. Whatever the
mechanism, a key requirement is that the mechanism be compatible with the observed reduction
in δ13C before the onset of glaciation. Not all of the relevant biogeochemistry will be treated in
this book, but in order to evaluate the hypotheses, it is certainly necessary that one have the tools
to assess how low any given greenhouse gas has to go in order to trigger a global glaciation. These
tools will be provided in subsequent chapters.

Assuming for the moment that the cooling process caused a Hard Snowball, the next question
is how to deglaciate the planet. We’ll see in Chapter 3 that one would have to wait a billion years or
more to exit from a Snowball if the exit were due to increase in solar output alone. Based on rather
simple reasoning of the sort that will be covered in the remainder of this book, Kirschvink proposed
that once the Earth freezes over, the weathering of silicate to carbonate (which requires liquid
water washing over weatherable rocks) ceases, so that CO2 outgassed from the Earth’s interior
accumulates in the atmosphere until it reaches concentrations sufficient to cause a deglaciation.
This is another illustration of the principle that Big Ideas come from Simple Models. A Big
Question (treated in subsequent chapters) is: how high does CO2 have to go in order to trigger
deglaciation of a globally ice-covered planet? Much hangs on the answer.

Both cap carbonates and the persistent negative carbon isotope excursion following the
Snowball events are consistent with a massive buildup of CO2 in the atmosphere during the frozen-
over period. Once the planet gets warm enough to deglaciate, the powerful precipitation in the
ensuing hothouse world would wash great quantities of land carbonates into the ocean, where they
would precipitate to form cap carbonates. Further, if photosynthesis nearly shuts off during the
glaciated phase, the inorganic carbon that accumulates in the ocean-atmosphere reservoir would
have δ13C comparable to the mantle outgassing value of about -6h. As this reservoir is gradually
transformed by silicate weathering into carbonate sediments, the isotopically light carbon works
its way into the carbonates. If the reservoir is big enough at the termination of the snowball, it
can keep the sedimentary carbonate δ13C light even in the face of a resumption of photosynthesis.
When interpreting the carbon isotope excursions in the course of a Snowball, it is essential to keep
in mind that the carbon cycle is likely to be far out of equilibrium in the course of these events.
A full understanding of the connection between the carbon isotope evolution and the sequence
of events surrounding the Snowball requires a detailed accounting of flows of carbon between the
many different carbon reservoirs in the Earth system – land carbonate rocks, marine carbonate
sediments, atmospheric carbon dioxide, various species of dissolved inorganic carbon, and organic
carbon.

Assuming that the the exit from a Snowballl state does indeed proceed from accumulation
of a great deal of CO2 in the atmosphere, several Big Questions arise in connection with the
post-glacial climate. Is there a risk of triggering a runaway greenhouse? If not, how hot does the
climate get in the tropics and polar regions? Would it be hot enough to sterilize the planet to any
great degree? How long is the post-snowball recovery? In other words, how long does it take for
weathering processes to draw the CO2 back down to more normal levels?
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Other Big Questions include: Why were there no Snowball event during the Big Yawn period
of the middlle Proterozoic? Why did Snowballl events cease at the beginning of the Phanerozoic?
Could they happen again, or is this particular threat behind us?

But let us not forget that another Big Question is whether there is a climate state with
significant amounts of open water in the Tropics, which is nevertheless consistent with the full
range of geological data accompanying the Marinoan and Sturtian events. One could pose the
same question for the Makganyene event, but there is less data to constrain the answer. The early
and late Proterozoic manifests a lot of climate ”weirdness” that is not seen elsewhere in Earth
history, and such striking signatures would seem to call for an equally dramatic cause, rather than
just a minor variation on the theme of ice ages. The global Snowball seems to fit the bill, but
it remains to be seen whether other explanations are possible. The climate physics developed
throughout this book will give the reader the underpinning needed to assess hypotheses as they
develop, and even perhaps to formulate new ones. fits the bill

Regardless of whether a true global Snowball glaciation ever happened on Earth, the Snow-
ball certainly represents a state a water-covered planet could fall into if the right stellar and
atmospheric conditions are encountered. Once a planet falls into a Snowball state,it is likely to
stay there for a long time, and the consequences for existing life and evolution of new forms of life
are profound. As such, Snowball states are a potential habitability crisis that extrasolar planets
need to avoid or surmount. It is therefore worth understanding, in general terms, the physics
of entry into, exit from, and duration of Snowball states, as well as the nature of the climate at
various stages of the sequence and the effect of the sequence on life. This constitutes another Big
Question, about which will have much to say.

1.9 The hothouse/icehouse dichotomy

The present climate has ice at both poles, and the ice volume has fluctuated episodically between
the present amount and a considerably larger extent for the past two million years (about which
more anon). However, the present icy climate is not at all typical of Earth history. A careful
study of the climate evolution over the past seventy million years illustrates a transition between
climate states archetypical of a theme that has been played over with variations during the 543
million years since the close of the Proterozoic. With this latest eon, known as the Phanerozoic,
we complete the repertoire of the major divisions of geologic time, as summarized in Fig. 1.7.
Though the very first preserved multicellular organisms appear at the close of the Proterozoic,
the Phanerozoic is the eon in which multicellular organisms of a generally modern form become
abundant and diversify, first in the ocean with colonization of land coming towards the middle of the
eon. Though the Phanerozoic was not subjected to extreme variations of climate and atmospheric
composition rivaling the Snowball or oxygenation transitions of earlier eons, the events of the
Phanerozoic are by no means inconsequential.

1.9.1 The past 70 million years

Figure 1.8 shows the paleogeography at the end of the Cretaceous, 65 million years ago. The
continent of Antarctica has approached the South Pole, and will continue to drift over the next 40
million years or so until it is more nearly centered on the pole. There is open water at the North
Pole in the late Cretaceous, and the open Arctic Ocean continues throughout the subsequent time
through the present. The modern continents of North and South America, Eurasia, and Africa
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Figure 1.8: Position of the continents at the end of the Cretaceous, 65 million years ago. Continents
are shown on a Mollweide map projection, with the North Pole at the top and the South Pole at
the bottom. Light areas are continents while dark grey areas are ocean.

are still early in their separation, leaving a narrow Atlantic ocean and a very broad Pacific. The
continents will continue drift apart as they approach their modern configuration; the Atlantic
widens steadily throughout the span of time under discussion.

The record of benthic foram δ18O in Fig. 1.9 provides a good overview of the climate
evolution for the past 70 million years. Towards the beginning of the period, δ18O is considerably
lower than it is in the modern ocean. It reaches a minimum value of -0.1haround 51 million
years ago. Independent geological evidence shows that there was no significant amount of ice
sequestered in land glaciers until 36 million years ago, so the variations in δ18O before this time
can be interpreted as polar ocean temperature changes. Melting the present ice in Antarctica
and Greenland would leave the ocean with a δ18O of around -.7hrelative to V SMOW . Plugging
this into the paleotemperature equation, we estimate a high-latitude ocean temperature of 15.5C.
This estimate applies to the coldest seasonal temperature attained either in the Arctic ocean or in
the waters surrounding Antarctica. This is well above the freezing point of sea water, and so we
conclude that the oceans were ice-free year round, even in the Arctic and Antarctic regions which
are very cold in the modern climate. We’ll refer to this kind of climate state as a hothouse climate.
The late Cretaceous polar temperatures were about 4C cooler than those at the peak warmth, but
still warm enough to guarantee ice-free conditions.

Other lines of evidence also support warm Northern high-latitude conditions and above-
freezing winter conditions. In the early twenty-first century, the first useful deep-time Arctic
marine cores were recovered, and TeX-86 proxies applied to these cores indicated Arctic ocean up
to 22C during the time of the spike marked PETM in Fig. 1.9, with temperatures in the range
of 17-18C before and after. Fossil vegetation from Arctic land also supports temperatures in this
range. Moreover, the abundant evidence that lemurs and crocodiles were able to survive in high
Northern latitudes points toward mild winters, since these creatures cannot survive sub-freezing
temperatures for any significant length of time.

While evidence for warm, ice-free polar conditions in the Eocene and late Cretaceous is un-
ambigous, the nature of the tropical climate is somewhat problematic. Up until the year 2001, most
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Figure 1.9: A composite record of benthic foram δ18O (vs. PDB) over the past 70 million years,
based on the average of several marine sediment cores. Data is from Zachos et al. 2001.

paleoceanographers would have said, based on planktonic foraminiferal 18O that the Cretaceous
tropical sea surface was no more than two or three degrees warmer than present, and the Eocene
tropical sea surface was no warmer than today, and might even have been cooler. This posed the
paradox of the ”low gradient” climate – how to warm up the planet enough to prevent polar ice,
without frying the tropics. In 2001, it was discovered that most of the evidence for a cool tropics
was spurious, having been affected by diagetic alteration of sediments. The surviving non-altered
data indicated a warmer tropics, but there was precious little data left after the diagenetically
contaminated data was discarded. Gradually, new sediments and new proxies have come to the
fore, and the story continues to develop. Tex-86 proxies and Mg/Ca proxies now indicate tropical
temperatures of up to 34C or even 37C in places, in the Eocene warm interval. Tropical surface
temperatures were two or three degrees cooler in the late Cretaceous. This still gives a considerable
reduction in the pole-equator temperature gradient as compared to the modern climate, but the
problem is not as severe as it was. It is quite certain that the tropical sea surface temperatures
could not have been as high as 40C, since the planktonic forams that are seen in the sedimentary
record could not have survived at such high temperatures. A striking feature of the data is that
tropical surface temperatures seem to remain fairly constant throughout the Eocene, though polar
temperatures (as indicated by the benthic forams) are decrease towards the Oligocene.

Returning to Fig. 1.9 we see that following the peak Eocene warmth of 51 million years ago,
the climate commenced a long slide toward the icehouse climate characterizing the latter part of
the record. Between the peak warmth and the beginning of the Oligocene 34 million years ago,
the minimum polar temperature dropped by 8C as indicated by benthic δ18O. At this point, small
ephemeral ice sheets began to form on Antarctica, culminating in a more substantial glaciation of
Antarctica that lasted until 26 million years ago, somewhat before the beginning of the Miocene.
The Oligocene glaciation is visible as a pronounced ditch in the δ18O. This first attempt at
glaciating Antarctica didn’t last however,since the climate recovered and returned to a period of
generally cold Antarctic conditions with sea ice but with land ice sheets having volume below 50%
of the present volume. This situation lasted until 15 million years ago, when the slide towards
icehouse conditions resumed. Antarctic ice sheets grew again, but the Northern hemisphere land
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glaciation had not yet been initiated by this time. The first abundant evidence of sea ice, based
on ice-rafted debris in polar sediment cores, appears at 14 million years ago. The increase in δ18O
in the next several million years is due to a combination of continued cooling and Antarctic ice
sheet growth, culminating in the initiation of the major Northern Hemisphere ice sheets around 6.5
million years ago, as we enter the Pliocene period. The oxygen isotopes begin to show substantial
fluctuations at this time, which grow in amplitude as one enters the Pleistocene. These fluctuations
are due to waxing and waning of ice sheets, predominantly in the Northern Hemisphere – in other
words, the coming and going of ”ice ages.” The nature of the fluctuations will be examined more
closely in Section 1.10.

What accounts for the nature of the hothouse climate state, and for the subsequent hot-
house/icehouse transition? This is another of the Big Questions. There is no support in astro-
physics for solar variability of a magnitude and type that could explain the transition, so attention
has settled primarily on long term fluctuations in the greenhouse gas content of the atmosphere. In
an oxygenated atmosphere like that of the Phanerozoic, CO2 is the only known long-lived green-
house gas that can build up to concentrations sufficient to cause climate changes of a magnitude
comparable to those seen over the Phanerozoic; to get fluctuations of the requisite magnitude re-
quires amplification of the direct CO2 effect by water vapor feedbacks, and cloud feedbacks can
also substantially modify the response. Another thing that makes CO2 a good suspect for the
role of primary agent in Phanerozoic climate evolution is the fact that it is a central participant
in all aspects of the inorganic and organic carbon cycle, which offers many possible mechanisms
whereby CO2 could evolve over the long term. There are a great many unresolved issues regarding
the CO2 theory of Phanerozoic climate evolution, but a central part of testing the theory is to
understand the way CO2 and water vapor act in concert to determine the temperature of a planet;
the necessary estimates will be given in Chapter 4, with further refinements to be given in Chapter
7. One needs to understand how much CO2 it would take to account for Eocene warmth, before
one can decide whether there are plausible geochemical mechanisms that could lead to the required
concentration.

The greatest impediment to testing the CO2 theory of the hothouse/icehouse dichotomy
is the difficulty of estimateing past CO2 levels. There are various geochemical and fossil proxies
that can be brought to bear on the problem. For example, algae preferentially take up 13C
at a rate that depends somewhat on the CO2 concentration in the water in which they grow.
Carbon isotopes in fossil soil carbonate, also preserves information about past CO2, as does the
density of pores (stomata) in fossil leaves. All estimates known to date are subject to considerable
uncertainty. Nonetheless there is support for the idea that CO2 concentrations around 70 million
years ago could have been 6-10 times modern pre-industrial values. The evidence points to a
general decline of CO2 since that time,but there are also some indications that CO2 may have
already attained quite low levels during some periods well before the Pliocene icehouse climate
set in. This is a rapidly evolving subject, however, and nothing definitive can be said at present.
What is certain is that there are known geochemical mechanisms associated with the Urey reaction
and silicate weathering, which have the potential for causing changes in atmospheric CO2 of the
required magnitude, and on a time scale consistent with the observations. These mechanisms will
be discussed in Chapter 9. As with any climate problem, on Earth or elsewhere, uncertainties
regarding cloud feedbacks complicate the problem of testing theories of climate response. It is not
out of the question that part of the answer lies in modulation of cloud albedo by, say, biologically
produced sulfur compounds that seed cloud formation. Further, if data should ultimately support
the low-gradient picture of the Cretaceous and Eocene hothouse climates, some mechanism will be
needed to keep the tropics from overheating while the poles are warmed by elevation of CO2. This,
too, may involve clouds, or it may involve changes in ocean circulation. It has even been suggested,
with considerable physical support, that increases in hurricane intensity in a warmer world could
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provoke ocean circulation changes of the sort required to provoke a low-gradient climate.

Figure 1.9 exhibits a dramatic climate event of considerable importance. The spike in δ18O
at the Paleocene/Eocene boundary (marked ”PETM” in the figure, for Paleocene/Eocene Thermal
Maximum) is not a glitch in the data. It represents a real, abrupt and massive transient warm
event. The spike looks small in comparison to the range of isotopic variation over the past 70 million
years, but in fact it represents the planet accomplishing two million years worth of warming in a
warm spike that (on closer examination) sets in within under 10,000 years and has a duration of
around 200,000 years. This isotopic excursion corresponds to a global warming of about 4C; other
proxy records show that the warming had similar magnitude in the Arctic and at the Equator,
and that is extended to the deep ocean. This climate event triggered a mass extinction of benthic
species, probably due to a combination of warming, oxygen depletion, and ocean acidification.
An important clue as to the cause of the warming is that the record of δ13C from the same core
(not shown) exhibits a major negative excursion at the same time, going from values of about
+1.2hdown to about zero at the bottom of the excursion. This indicates a catastrophic release of
large quantities of isotopically light carbon into the climate system, which presumably increased
the atmospheric greenhouse effect and led to warming. One possibility is that the release came in
the form of methane from destabilized clathrate ices in the ocean sediments; another is that the
isotopically light carbon came from oxidation of suddenly exposed organic carbon pools on land,
releasing large quantities of CO2. Based on analysis of the carbon isotope record, it has been
estimated that approximately 4200 gigatonnes of carbon were released into the ocean-atmosphere
system, if the release were from organic matter. This compares with 700 gigatonnes of carbon in
the form of CO2 in the modern atmosphere. This would considerably enhance the atmospheric
greenhouse effect, though the effect would largely wear off after a thousand years or so, over which
time about 80% of the released carbon works its way into the ocean. It is far from clear that one can
account for the observed magnitude and duration of PETM warming with the amount of carbon
one has at ones’ disposal. This is one of the Big Questions. We shall not answer it in this book,
but the reader will be provided with the tools needed to assess the warming caused by various
amounts of CO2 or methane, and also (in Chapter 9) a bit of insight about the partitioning of
carbon between atmosphere and ocean. These are tools one must have at hand in order to evaluate
any theory of the PETM.

The Cretaceous is closed by the impact of a large asteroid or comet (known generically as
a bolide). This is known as the KT impact event (for ”Cretaceous/Tertiary,” Tertiary being an
obsolete term for the period following the Cretaceous). This event has little or no expression in
the isotope record shown in Fig. 1.9, and is instead identified by global presence of a layer of
the element iridium. The impact crater has also been identified, which allows an estimate of the
energy of the impactor. The KT impactor had effects of extreme consequence despite the lack of
an expression in the oxygen isotope record. Notably, it was the dinosaur killer – though many
other species went extinct at the same time. Examination of the carbon isotope record shows
also that the ocean carbon cycle remained highly perturbed for millions of years. There are many
Big Questions associated with the consequences of a bolide impact. What is the mechanism by
which the impact causes extinction? Is it direct blast and heat, or some longer-lasting change in
the climate? It has been estimated that the impactor released about 5 · 1023 Joules of energy.
How does this energy compare to other energy sources in the climate system, and what effects
should it have on the atmosphere and ocean? What are the broader effects of a bolide impact on
climate, and how long do they last? Does the impact cause a warming (perhaps through release
of greenhouse gases) or a cooling (through lofting of a dust and soot cloud)? Some of the climate
questions will be taken up in Chapter 4.

The KT impact event is the archetype of impact events, which have been episodically impor-
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Figure 1.10: Known occurrences of land glaciation during the Phanerozoic. Tall shaded bars
indicate periods of major glaciation in which ice reaches to latitudes of 50N or 50S, while short
shaded bars indicate periods of more minor glaciation.

tant throughout Earth history. Similarly the Earth has experienced many other mass extinctions
besides that at the KT boundary, not all of which are clearly associated with a bolide impact. All
mass extinctions lead to Big Questions.

1.9.2 Hothouse and icehouse climates over the Phanerozoic

The Cretaceous hothouse climate and the Pleistocene icehouse climate represent opposite extremes
of the Earth’s typical climate state of the past half billion years. Going back further in time, the
Snowball Earth represents an ultra-extreme on the cold end; going further afield in space, the
runaway greenhouse represents an ultra-extreme on the hot end, though one that evidently never
occurred on Earth. The Earth has experienced many individual hothouse and icehouse episodes
in the past half billion years. For times earlier than 70 million years ago one cannot rely on δ18O
records from sea-floor sediments to provide a cross-check on ice volume. Instead, one must look
for evidence of glaciation or temperate polar climate preserved as glacial features or fossil animal
and plant occurrences on land and in near-coastal environments. This record is far less complete
and well-preserved. An accurate long term sea level record would make it possible to estimate
ice volume in the distant past, but recovering and interpreting sea level has proved difficult. It is
certainly possible to detect the existence of major glaciations, but good estimates of ice volume
are not available for pre-Mesozoic glaciations. The periods between major glaciations – tentatively
labeled as hothouse climates below – could well have undetected episodes of polar ice embedded
within them. The known episodes of major and minor land glaciation are summarized in Fig. 1.10.

The Cretaceous hothouse conditions extended back throughout the entire Mesozoic, and well
into the late Permian. There is evidence that some of these periods, notably the early Jurassic,
may have been even warmer than the Eocene. To find another era of glaciation to rival that of the
Pliocene and Pleistocene icehouse, one needs to go back to late Carboniferous and early Permian.
The sixty million year period centered on the Permo-Carboniferous boundary 300 million years ago
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was a time of very extensive glaciation, reaching to lower latitudes even than the Pleistocene ice
ages, though not attaining Snowball proportions. This period is a crucial one for the CO2 theory
of Phanerozoic climate, since it is a time when there is quite strong evidence for low CO2. The
earlier Phanerozoic exhibits comparatively minor glaciations at the end of the Devonian, in the
mid-Silurian and for a brief period in the mid-Cambrian, but so far as the Phanerozoic goes, the
Permo-Carboniferous glaciation is the big one to explain.

The changing paleogeography, shown in Fig. 1.11, is likely to have influenced climate. In
particular, it is bound to be easier for a glacier to accumulate on land if there is land at or near one or
both of the poles. Certainly there is land at the South Pole during the Carboniferous glaciation and
the current glaciation that began in the mid-Cenozoic. However, this is clearly not the whole story,
as there was plenty of land at the South Pole already 400 million years ago, but the Carboniferious
glaciation didn’t set in until nearly a hundred million years later. Likewise, Antarctica was already
near the South Pole during the Cretaceous, but Antarctic glaciation only took off in the mid-
Cenozoic. Most likely, fluctuations in CO2 – probably itself affected by continental configuration
– play a crucial role in the timing of glaciations.

A general theme in the evolution of paleogeography is the assembly and breakup of su-
percontinents. From 500 million years ago to 400 million years ago one can see the Southern
supercontinent Gondwana near the South Pole, though there are a few leftover bits of land that
are not part of Gondwana. By 300 million years ago, Gondwana has merged with these bits to form
the global supercontinent Pangea, which then breaks up into the present continents over the course
of the rest of the Phanerozoic. The interiors of supercontinents are isolated from the moderating
effects of the oceans on climate, and so could be expected to experience harsh seasonal swings in
temperature. Do we expect supercontinent interiors to be deserts or steaming, moist fern forests?
This is another of the Big Questions.

Is there a clear dominance of hothouse or icehouse conditions over the past half billion years?
The record of the past hundred million years certainly supports the notion that the largely ice-free
hothouse is the preferred state of the Earth’s climate, but going further back in time it is harder to
say whether the apparent dominance of hothouse conditions is an artifact of poor preservation of
the polar deposits where glaciers are most likely to have occurred. Some of the episodes we think
of as hothouse climates could well have had significant amounts of ice.

In any event, the delineation of the circumstances which favor icehouse or hothouse climates,
and the factors governing the transition between the two, constitutes one of the Big Questions of
climate science. It seems likely that if the hothouse/icehouse transition of the past 70 million years
can be understood, similar mechanisms could be applied to the rest of the Phanerozoic. Variations
on the theme would include a greater range of different continental configurations – notably the
breakup of supercontinents – as well as biological innovations such as the colonization of land and
the evolution of deepwater carbonate shell-forming micro-organisms, both of which can affect the
global carbon cycle.

During the Phanerozoic, life on Earth went through a number of mass extinctions rivaling or
exceeding the end-Cretaceous event. The biggest mass extinction of all occurred at the end of the
Permian, wiping out 96% of all marine species, 70% of all land vertebrates, and a large fraction of
all land plants and invertebrates. It is the only mass extinction that included insects to any great
extent. There is no clear evidence for a bolide impact at this time, though it remains possible that
an impact occurred but failed to leave a trace in the fossil record. In any event, the cause of the
end-Permian mass extinction ranks as one of the Big Questions.
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Figure 1.11: Evolution of geography over the Phanerozoic. Map projection and shading as for Fig.
1.8. The numbers give the time in millions of years ago.
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1.10 Pleistocene Glacial-Interglacial cycles

Now we’ll take a closer look at what’s been going on in the past five million years. The earlier
portion of this time is known as the Pliocene epoch, and the latter portion, beginning around 1.8
million years ago, is the Pleistocene. The choice of the Pliocene-Pleistocene boundary is based on
an obsolete notion of the time when Northern Hemisphere ice sheets attained nearly their modern
extent. At the level of geological periods, the Neogene-Quaternary more closely approximates this
distinction. The Quaternary period extends all the way to the present, but the Pleistocene is
terminated somewhat arbitrarily at the end of the last major ice sheet retreat around 10,000 years
ago. The remainder of time up to the present is the Holocene epoch. This is a very human-centric
division, since the time we are experiencing now is a fairly ordinary Pleistocene-type interglacial
period – or at least it was up until the commencement of the industrial revolution. A more
rational division would extend the Pleistocene up to about the year 1700, whereafter we would
enter something with a name like ”Anthropocene” (for reasons to be discussed in Section 1.12).

The Pliocene and Pleistocene are a time of establishment of the great Northern Hemisphere
ice sheets. During this time, the ice sheets settled into a rhythm of expansion and retreat – the
rhythm of the coming and going of ice ages. The notion of an ”ice age” is distinct from that of
the ”icehouse climate state” introduced earlier. The latter term refers to a span of time (usually
several million years) during which there is permanent ice at one or both poles. Within the time
embraced by an icehouse climate state, ice volume is not constant, but fluctuates episodically with
variations in ice volume that can be on the order of a factor of two (judging from the Pleistocene).
Individual episodes of large ice volume within an icehouse climate are referred to as ice ages, with
the warmer periods in between referred to as interglacials, though the ice doesn’t come close to
disappearing completely. In the Pleistocene, the fluctuation in ice volume is dominated by changes
in Northern Hemisphere ice sheets, but as ice ages come and go, the entire globe becomes colder
and warmer.

1.10.1 The Marine Sediment Record

Figure 1.12 shows the δ18O of benthic forams in a tropical Pacific core over the past 4 million years.
The short-period fluctuation represents fluctuations in both ice volume and benthic temperature,
and in addition there is a downward trend in temperature and increasing trend in ice volume over
the earlier two million years of the period. By 2 million years ago, the flucutations have settled
into a fairly regular pattern, with a dominant period of about 40,000 years. The period may be
crudely estimated by counting peaks in the isotope record. This says that major ice advances in
the early Pleistocene occur roughly every 40,000 years. About 800,000 years ago, there is a major
transition in which the amplitude of the glacial-interglacial cycle becomes markedly larger, and the
periodicity lengthens to about 100,000 years. During this period, an asymmetry between glaciation
and deglaciation becomes readily apparent: the climate cools and ice builds up over long periods
of time, but deglaciation occurs rather precipitously.

The periodicity of the ice ages, and the reason for the transition to a dominant 100,000 year
cycle later in the Pleistocene is another of the Big Questions of climate science. We will learn in
Chapter 8 that the periodicities are almost certainly connected with the quasiperiodic variations
of the Earth’s orbital characteristics – namely the tilt of its rotation axis and the departure of
the orbit from circularity. The cycles are known as Milankovic cycles, after the scientist who first
formulated a detailed theory connecting orbital parameters with the coming and going of ice ages.
Milankovic’s theory was largely ignored for decades, because not enough was known about the
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Figure 1.12: Benthic foram oxygen isotopes from the Ocean Drilling Program Core ODP 849 (see
Mix et al in the Further Readings for this chapter). Values are reported relative to the PDB
standard. The core is located in the tropical Pacific, but the benthic data is representative of
the global climate state. Note that the vertical axis has been reversed, so that upward excursions
represent warmer and less icy times.
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pattern of ice ages to give the theory a fair test. It was only revived in the 1970’s, when data of
the sort given in Figure 1.12 first became available. Even today, the means by which cycles in
orbital characteristics are expressed in the climate record are far from clear, and remain a subject
of active research.

This is another case in which the lesson learned from Earth carries over to other planets,
as the orbital parameters of Mars also show Milankovic cycles. Compared to Earth, however, the
study of how these cycles are expressed in the paleoclimate record of Mars is in its very infancy.

1.10.2 Ice core records

The ice at the base of the Antarctic ice sheet is about a million years old, so one can also retrieve
a record of past climate by drilling cores into the ice. Many aspects of climate are recorded in the
ice, but the ones that will concern us here are stable isotopes of water (δD and δ18O), recorded
in the ice itself, and composition of past air preserved in bubbles within the ice. The stable
isotopes are essentially recorders of temperature; the ice becomes more isotopically light as the
polar temperature becomes colder, since, more of the heavy isotopes have been distilled out in that
case.

The upper panel of Fig. 1.13 shows the δD time series from the Vostok and Epica ice cores
in the Antarctic. The Vostok data is systematically below the Epica data because Vostok is further
inland, higher and colder, but otherwise tracks the Epica data. This record only covers the period
within which the glacial-interglacial cycles have already settled into a 100,000 year cycle; older
ice is too distorted to yield a useful record. This record confirms the 100,000 year cycle seen in
the marine cores, and also confirms the asymmetry between slow buildup of glaciers and rapid
deglaciation. It also shows that there is a strong Antarctic warming and cooling that occurs in
association with the glacial/interglacial cycles.

The CO2 data is shown in the lower panel of Fig. 1.13. In the course of the glacial/interglacial
cycles, CO2 fluctuates between 180 parts per million (by count of molecules) and 300 parts per
million. Moreover, the fluctuation is very nearly synchronous with the warming and cooling. The
correlation between CO2 and temperature does not determine which causes which (or whether
they mutually reinforce each other), but since CO2 is a greenhouse gas, it is certain that the rise
in CO2 warms the planet and reinforces the termination of ice ages, whereas conversely the fall of
CO2 enhances cooling and reinforces the onset of glaciation. The origin of the glacial/interglacial
CO2 cycle is another of the Big Questions. Our understanding of glacial/interglacial cycles cannot
be complete without resolving this question.

Greenland ice also records past climate, as seen in Fig. 1.14. The base of the Greenland ice
cap is not as old as the Antarctic ice, so one can only go back in time about 100,000 years here.
By way of compensation, though, the rate of snow accumulation in Greenland is much higher than
in Antarctica, so one can see the past with much higher time resolution.

The Greenland record records a sharp deglaciation leading to the modern era, consistently
with the Antarctic record. However, we can see in Greenland that there are many high frequency
temperature fluctuations embedded within the glacial period –especially the period from about
60,000 years ago to 10,000 years ago. These don’t have a strict periodicity, but have a time scale
on the order of a thousand years, and hence are collectively referred to as millennial variability.
The expressions of millennial variability seen in Greenland isotopes are called Dansgaard-Oeschger
events after their discoverers. There are many other climate proxies that reflect millennial vari-
ability of the sort seen in Greenland isotopes, and these often represent precipitous switches in the



56 CHAPTER 1. THE BIG QUESTIONS

-500

-450

-400

-350

0100200300400500600700800

Antarctic Ice-Core Deuterium Vostok

Epica Dome C

δ  
D

Thousands of years before present

160
180
200
220
240
260
280
300

0100200300400500600700800

Antarctic Ice-Core CO
2 Vostok

Epica Dome C

C
O

2 (
pp

m
v)

Thousands of years before present

Figure 1.13: Data from the Vostok and Epica Antarctic ice cores. The upper panel shows the
variation in deuterium depletion of the ice, which is a proxy for temperature. Higher (less negative)
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Figure 1.14: Oxygen isotope data from the GISP-2 Greenland ice core. Larger (less negative)
values correspond to warmer temperatures.

climate state – referred to as abrupt climate change.. One of the most striking of these abrupt
change events occurs as the planet is coming out of the most recent ice age – the Last Glacial Max-
imum (or LGM). The spike marked ”B” in the figure is the Bolling warm period, and represents a
recovery of the climate to full interglacial warmth. However, in the wake of the Bolling the climate
abruptly reverted to full glacial temperatures, in an event known as the Younger Dryas (marked
”YD” in the figure). The Younger Dryas is believed to have been triggered by a massive draining
of a glacial lake into the ocean, but generally speaking the mechanisms of both the Younger Dryas
and of millennial variability remain as Big Questions that are yet to be resolved. This is an es-
pecially important question because the flat, quiescent period at the end of the Greenland record
– the Holocene period we have lived in for all of the history of civilization – represents an abrupt
cessation of high amplitude millennial variability. What accounts for the uncommonly stable cli-
mate of the Holocene, and what would it take to break this situation? This is a Big Question with
considerable import indeed.

1.11 Holocene climate variation

The climate variations of the Holocene have been (at least so far) more subtle than the massive
variations we have discussed previously. In part, this is simply because the Holocene is a short
period of time, and there hasn’t been enough time for something really dramatic to happen,
given the relatively slow pace of many of the geological processes that modify climate. But the
limited span of the Holocene is not the whole story. The Holocene has not witnessed extreme
millennial scale variability of the sort seen in the preceding glacial time. Indeed, one of the Big
Questions concerning the Holocene is the physical basis for the relatively stable Holocene climate.
In particular, given the massive assault on climate by industrial society (see Section 1.12) it becomes
all the more pressing to understand what it would take to break the equable and steady Holocene
climate enjoyed during the rise of civilization.

Still, the Holocene has not been without its points of interest so far as climate variations
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go, the more so because there were human civilizations around to witness and be affected by these
variations. A key driver of Holocene climate change is the precessional cycle, to be discussed in
Chapter 8. It is the same precessional cycle that plays a role in the rhythm of the Pleistocene
ice ages. The Earth’s spin axis precesses like a top, so that the way the ”tilt seasons” line up
with the ”distance seasons” associated with the varying distance of the Earth from the Sun goes
through a cycle lasting about 22,000 years. A quarter cycle is only 5500 years, which brings these
cycles within the span of recorded history. At present, the Earth is farthest from the sun when
the Northern Hemisphere points towards from the Sun (i.e. during Northern summer), and is
closest to the Sun when the Northern Hemisphere points away (i.e. during Northern winter). This
gives us relatively warm winters and relatively cool summers. 11000 years ago the situation was
reversed, and Northern Hemisphere summers received considerably more sunlight than they do
today, particularly at high latitudes. This should have made polar regions considerably warmer
than today, but for reasons that are only partly understood, the time of warmest summers was
delayed several thousand years, to a time called rather tendentiously the Climatic Optimum about
7000 years ago. It is not entirely clear what the climate was ”optimal” for, and this is in any
event a Northern-centric view as Southern hemisphere continents if anything experienced a weak
cooling at this time (as one would expect from the nature of the precessional cycle). The alternate
term Altithermal is preferred, as being less value-laden. In any event, at this time the Northern
polar regions were getting up to 10% more solar radiation in summer than they are today, leading
to warmer summers. The warming is expected to be greatest over land, since oceans average out
the warm summers and cold winters. Tree ring records indicate that high-latitude land masses
were between 2C and 4C warmer in the summer at the time of the Altithermal. These estimates
are corroborated by an expansion of the tree line to higher altitude land in the European Arctic.
Cold-tolerant trees are primarily sensitive to growing-season temperatures, and are little effected
by a moderate decrease in winter temperatures; in fact, more severe winters can in some cases be
favorable to tree growth, since cold winters interrupt the life cycle of various insect pests. While
the Altithermal is certainly connected with the precessional cycle, the magnitude of the warming,
the cause of the delay in warming (partly associated with leftover glaciers from the last ice age),
and the role of ocean circulations and vegetation changes in the altithermal, are all active subjects
of research.

The precessional cycle has also had a profound effect on the distribution of precipitation
in low latitudes. The Sahara is a desert today, but the dry river features known as wadis were
flowing with water six thousand years ago, at which time the desert was a savannah grassland. This
wet period commenced about 14,500 years ago and the Sahara abruptly reverted to desert about
4700 years ago. There are also intriguing indications that the time of initiation of present tropical
mountain glaciers follows a precessional cycle. For example, the Peruvian Andean glaciers of the
Southern Hemisphere date back to the last ice age, while the Kilimanjaro ice fields were laid down
during the African Humid Period about 10,000 years ago and Himalayan glaciers of the northern
subtropics tend to be even younger. The connection between the seasonal cycle of solar radiation
and the tropical precipitation distribution involves atmospheric circulations – monsoons and the
Hadley circulation – that cannot be treated without a full understanding of atmospheric fluid
dynamics. We will therefore have only limited opportunities to pursue the precessional precipitation
cycles in the course of this book, though the treatment of the precessional cycle in solar forcing
will provide the student with the necessary background for further study.

The Little Ice Age is another Holocene climate fluctuation of considerable interest. This
term refers to a period of generally cool Northern Hemisphere extratropical land temperatures
extending from approximately 1500 to 1800. Tree ring estimates suggest the Northern Hemisphere
mean temperature dropped by something over 0.5C between the year 1400 and 1600. The cooling
is corroborated by records of advances of mountain glaciers, sailors’ observations of sea ice, and
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agricultural records. The Little Ice Age is too short and too recent to have anything to do with
the precessional cycle, and while it is possible that fluctuations in the ocean circulation could have
produced the cooling, the prime candidate for an explanation of the Little Ice age is a temporary
slight dimming of the Sun. Sunspot observations do indicate a cessation in the normal solar
sunspot cycle – called the Maunder Minimum– at about the time of the Little Ice Age. However,
most estimates of the associate solar output change are far too small to yield a significant cooling.
Various mechanisms are under investigation which could amplify the response to the small solar
fluctuation, but in the grand scheme of things the Little Ice Age is a rather subtle event, and
accordingly hard to understand, particularly in terms of simple models.

To put the Holocene in perspective, it is salutory to note that the ”abrupt” PETM event
discussed in Section 1.9.1 lasted nearly 200,000 years, and set in over a period of around 10,000
years – as long as the full length of the Holocene. There really hasn’t been much time for things
to happen in the Holocene, and the time span of Figure 1.9 no doubt contains many 10,000 year
periods as quiescent as the Holocene has been up until recently. Short as the Holocene is, we will
see next that human activities have been able to cause some dramatic changes in the composition
of the atmosphere and consequently in the Earth’s climate. One wonders what it would take
to trigger a hyperthermal event such as the PETM, which is over in the wink of an eye by the
standards of Figure 1.9, but has a duration twenty times as long as the span of human civilization
to date.

1.12 Back to home: Global Warming

We have seen that CO2 has been a major factor in determining climate througout Earth’s history,
and that life, in turn, has greatly shaped the carbon cycle. Life is in the midst of disrupting
the carbon cycle once more, but this time it’s technological life that has provided the necessary
innovations. Over billions of years, a great deal of organic carbon has been sequestered in the
Earth’s crust without oxidizing. Most of this carbon is in very dilute forms which cannot easily be
tapped to provide economically useful amounts of energy. However, a very small portion winds up
in nearly pure forms that are moreover chemically altered in a fashion that makes them especially
convenient as fuels. These are the fossil fuels – coal formed from land plants and oil formed in
marine environments. Natural gas can be produced by thermal alteration of either coal or oil.
Fossil fuels represent concentrated solar energy stored in the form of organic carbon, which has
been accumulating over hundreds of millions of years. This pool of readily oxidizable carbon exists
precisely because it is in geological formations that have kept it apart from oxygen over the ages.
It is only the evolution of technical civilization that is making it possible to dig up and oxidize
hundreds of millions of years worth of stored fossil carbon within a few centuries.

In the year 2005, over 8 gigatonnes (8 ·1012kg) of carbon were released by fossil fuel burning,
and annual emissions continue to grow rapidly. There are several ways to see that this is a very big
number – a major upset to the natural carbon cycle. First, the pre-industrial atmosphere contained
about 600 gigatonnes of carbon, so the 2005 annual emission is fully 1.3% of the undisturbed
atmospheric content. If the same amount were released into the atmosphere each year, it would
take only 75 years to double the atmospheric CO2 content, provided all the released CO2 stayed in
the atmosphere. Alternately, one could compare the fossil fuel emissions to the volcanic outgassing
which in the long term balances silicate weathering and sustains the carbon cycle. Precise estimates
of volcanic outgassing are hard to come by, but generally are on the order of 0.1 gigatonnes of carbon
per year or less. Thus, fossil fuel carbon emissions are eighty times larger than background volcanic
outgassing. In fact, the very largest carbon flux number involved in the whole carbon cycle is the
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net CO2 carbon fixed into organic carbon each year by worldwide photosynthesis, and fossil fuel
emissions even look impressive when compared to this number. Based on satellite chlorophyll
observations, it has been estimated that photosynthesis fixes 100 gigatonnes of carbon each year,
about half on land and half in the oceans. The year 2005 fossil fuel emissions were fully 8% of this
number. In other words, worldwide photosynthetic productivity would have to increase by 8% to
take up the fossil fuel CO2 and 100% of that carbon would have to be buried as organic matter
without being recycled by respiration.. That, of course, would be a completely absurd situation, as
virtually all of the photosynthetically fixed carbon is quickly respired back into the atmosphere,
largely by bacteria who have had several billion years to become proficient at making use of organic
carbon wherever they find it. As an example, land photosynthesis fixes about 50 gigatonnes of
carbon each year, but the flux of organic carbon to the oceans in all the world’s rivers is a mere 0.4
gigatonnes per year (one twentieth of fossil fuel carbon emissions). And there is no evidence that
much of the remainder of the photosynthetically fixed carbon is remaining on land as soil organic
carbon. To say that humans have become a force of geological proportions vastly understates
the case, for by this measure human influences on the carbon cycle overwhelmingly dominate the
natural sources.

The result of all our busy digging and burning has been a steady increase in atmospheric
CO2. Figure 1.15 shows the time series of atmospheric CO2 concentration since 1750. CO2 has
a very atmospheric lifetime, so it is well-mixed. In consequence, one finds nearly the same CO2

concentration whereever one measure it, so long as the measurement is not in the immediate
vicinity of major sources or sinks. The part of the record since 1950 comes from direct analyses
of air samples at the Mauna Loa observatory, whereas the earlier part of the record comes from
air trapped in bubbles in the ice of the Siple Dome site, Antarctica, but the two records match
up well where they meet. At the dawn of the industrial era CO2 concentrations are near 280
molecules per million ( ppmv for short), right where they were left at the end of the most recent
ice age. After 1750 the concentrations begin to rise, and by 2007 the concentrations have exceeded
380ppmv – fully 35% above the pre-industrial value. Most of the increase has happened since the
mid-twentieth century, and the rate of increase seems to be accelerating along with population and
economic growth.

Not all of the carbon released by fossil fuel burning has remained in the atmosphere. Es-
timates based on careful historical inventories suggest that only about half of the total carbon
released to date remaines in the atmosphere as carbon dioxide. Most of the remainder has slowly
infiltrated the ocean, with a lesser amount having been taken up by the terrestrial ecosystem (net
of deforestation). In fact, it has been shown that the rate at which the ocean can take up the
excess CO2 is limited by the mixing between the upper ocean and the deep ocean. This is a slow
process, and if all fossil fuel burning were to suddenly cease, it would take in excess of 600 years
for 80% of the excess CO2 to be taken out of the atmosphere. The remainder would stay in the
atmosphere for millennia longer, owing to certain chemical processes (discussed briefly in Chapter
9) which limit the ability of the ocean to take up CO2. The slow net removal rate of CO2 allows
fossil fuel emissions to accumulate in the atmosphere. Another consequence of the long lifetime
of CO2 in the atmosphere is that the climatic effects of elevated CO2 will persist for centuries to
millennia, even after any (much to be hoped-for) dramatic restriction of fossil-fuel burning. Allow-
ing for uptake by the ocean, there are enough fossil fuel reserves– primarily in the form of coal –
to ultimately increase the atmospheric CO2 concentration to at least six times the pre-industrial
value. The number could go much higher if the ocean sink were to become less efficient, or if land
ecosystems were to turn around and become a CO2 source rather than a sink.

This all leads us to a series of very Big Questions: if the rise in CO2 is allowed to continue
to a doubling of the pre-industrial value, how much will the Earth warm? How will the warming
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Figure 1.15: Annual mean CO2 concentration from 1750 to the time of writing. The earlier part
of the record is from air trapped in bubbles in the Siple Dome Antarctic ice core. The more recent
part of the record is from instrumental measurements at the Mauna Loa observatory. The units
are molecules of CO2 per million molecules of air.

be distributed? How much will sea level rise as a result of melting land ice and thermal expansion
of ocean water? What will happen to precipitation patterns? How will all of this affect human
societies and natural ecosystems? The basic physics needed to treat these questions is identical to
what is used to account for the influence of CO2 and other long lived greenhouse gases on past
climates. The problem in this instance has more immediacy as many generations our descendents
will be living with the consequences of our fossil fuel emissions in the next several decades. In
order to understand what kind of planet we are leaving these descendents, there is a demand for
greater detail in the understanding of the climate changes to be wrought by these rapid increases
in atmospheric CO2.

Interest in the effect of CO2 changes on climate long predates the kind of data shown in
Figure 1.15 which showed that CO2 was on the increase, and in fact predates the realization
that human activities really could cause CO2 to increase appreciably. Likewise, global warming
was a concern long before it was confirmed that the Earth really was warming in response to
increases of CO2. These things were all anticipated theoretically a century or more before global
warming burst onto the scene as an issue of political consequence, and the driving force was basic
curiosity about the physics governing planetary temperature. It’s a line of inquiry that extends
right back to Fourier’s pathbreaking inquiry into how an atmosphere affects the energy budget
of a planet, and hence its temperature. The discovery of global warming is a great triumph of
two centuries of developments in fundamental physics and chemistry. It is not a matter of people
having noticed that both CO2 and temperature were going up, and concluding that the first must
be somehow causeing the second. Both the rise of CO2 as a consequence of fossil fuel burning, and
the consequent rise in temperature as a response to the Earth’s perturbed energy balance, were
anticipated long before either was observed.

After Fourier, the tale resumes with Tyndall, whose work on the infrared absorption of CO2

and water vapor was mentioned near the beginning of this chapter. Tyndall was interested in
these gases because of the questions raised by Fourier regarding the factors governing planetary
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temperature. He was also interested in the recently-discovered phenomenon of the ice-ages, and
with several contemporaries thought perhaps ice ages could arise from a reduction in CO2. In that,
he was partly right; the Pleistocene ice ages are cold partly because of the glacial interglacial CO2

cycle, even though the ultimate pacemaker of the ice ages is the rhythm of Earth’s orbital param-
eters. Tyndall died, however, before he ever had the chance to translate his measurements into a
computation of the Earth’s temperature. That task was left to the Swedish physical chemist Svante
Arrhenius, who in 1896 performed the first self-consistent calculation of the Earth’s temperature
incorporating the greenhouse effect of water vapor and CO2. Interestingly, Tyndall’s measurements
were not sufficient to provide the information about weak absorption over long path lengths, so
for the absorption data he needed he turned to Langley’s observations of infrared emitted by the
Moon. It was a felicitous re-use of data intended originally for determination of the Moon’s tem-
perature, and indeed was a more correct use of the data than Langley was able to accomplish.
This shows the benefit of curiosity-driven science: measurements taken to satisfy curiosity about
lunar temperature wound up being instrumental in permitting an evaluation of the effect of the
Earth’s atmosphere on the Earth’s temperature. Astronomers initiated the study of infrared as an
observational technique, but the radiative transfer work stimulated by their needs soon provided
the crucial tool needed to understand planetary climate. Arrhenius not only estimated the Earth’s
then-current temperature, but also estimated how much it would warm if the amount of CO2 in
the atmosphere were to double. Using clever scaling analyses from Langley’s data, he was able to
do this without a firm knowledge of just what the atmosphere’s CO2 content actually was. Not
long afterwards, he realized that industrial burning of coal was dumping CO2 into the atmosphere,
and could eventually bring about a doubling; he described this process as ”evaporating our coal
mines into the atmosphere.” At then-current rates of consumption, it appeared that a doubling
would take up to a millennium, and Arrhenius would no doubt have been surprised to know that
his own great-grandchildren could well live to witness the doubling. This takes our story to about
1900. What happened then?

A long hiatus. Two unfortunate turns of events held back the study of global warming
for many decades. The first was a highly touted experimental study published in 1900 by the
prominent physicist Angstrom, which purported to show that the radiative effects of CO2 are
”saturated,” i.e. that the gas already absorbs as much as it can at the atmosphere’s then-present
concentration, so increases would have no effect. A concomitant and closely associated (and equally
wrong) idea was that the strong absorption of water vapor would completely swamp any effect
CO2 might have. The experiment turned out to be wrong, but such was Angstom’s reputation and
such was the resistance to the idea that humans could change climate that it was decades before
anybody checked the result. Moreover, it turns out that even if Angstrom had been right, it would
not have negated the greenhouse effect; this misunderstanding hinged on the poorly developed
understanding of radiative transfer in a temperature stratified atmosphere. The ”grey gases” we
will study in the first half of Chapter 4 are ”saturated” in the sense of Angstrom, but nonetheless
permit a very strong greenhouse effect. The second barrier to progress was the belief that the
huge carbon content of the ocean would buffer the atmosphere, overwhelming anything human
industry could have thrown at it. The carbonate chemistry needed to defeat this idea could have
been done at the time of Arrhenius, and indeed requires nothing more than is taught routinely in
high-school chemistry courses today. However, the logjam was not broken until Revelle and Suess
took up the challenge in 1957, and showed that the upper ocean could not take up nearly as much
CO2 as had previously been thought. No doubt, if it hadn’t been for Angstrom’s insistence on
saturation, this chemistry might have been worked out much sooner. Close on the heels of Revelle
and Suess’s result came the urgency of actually measuring atmospheric CO2, which was initiated
by Charles Keeling, whose work culminated in the Mauna Loa data shown in Fig. 1.15. The
techniques for recovering past CO2 from air bubbles trapped in ice was not to be developed until



1.12. BACK TO HOME: GLOBAL WARMING 63

the 1970’s, so Keeling had to wait a decade or so before it was clear that CO2 was really rising,
and a bit more time after that before there was a clear idea of just how high CO2 already was
relative to the pre-industrial value. This work, together with developments in infrared radiative
transfer stimulated by astronomical observation and military interest in infrared target detection
lead to new breakthroughs in the formulation of radiative transfer. The work culminated in 1967
with the calculation by Manabe and Wetherald of the Earth’s temperature using modern radiative
physics. They were also able to calculate the warming due to a doubling of CO2, allowing for
expected changes in water vapor content as the planet warmed. This was not the end of the story,
which indeed continues today, since there was much to be done in terms of embedding the radiative
transfer in a fully consistent computation incorporating the fluid dynamics of the atmosphere –
a general circulation model. It was, however, the beginning of the modern chapter of the study
of global warming. With the publication of the Charney report by the US National Academy
of Sciences in 1979, global warming began to be perceived as a real threat. The powers that be
were slow to awaken to the magnitude of the problem, and several more years were to pass before
the creation of the Intergovernmental Panel on Climate Change in 1988, which initiated regular,
comprehensive surveys of the state of the science surrounding global warming. At the time of
writing, the world still awaits substantive action to curb fossil fuel emissions.

All aspects of the essential chemistry, radiative physics and thermodynamics underlying the
prediction of human-caused global warming have been verified in numerous laboratory experiments
or observations of the Earth and other planets. Other aspects of the effect of increasing greenhouse
gases rely on complex collective behavior of the interacting parts of the climate system; this includes
behavior of clouds and water vapor, sea ice and snow, and redistribution of heat by atmospheric
winds and ocean currents. Such things are impossible to test in laboratory experiments. To some
extent, aspects of our theories of the collective behavior have been tested against the seasonal
cycle of Earth, interannual variability, and past climates, as well as attempts to simulate other
planetary climates. The ultimate test of the theory, though, is to verify it against the uncontrolled
and inadvertent experiment we are conducting on Earth’s own climate. Can we see the predicted
warming in data? This is not an easy task. For one thing, the atmospheric CO2 increase is only a
small part of the way towards doubling, and the climate has not even fully adjusted to the effect
of this amount of extra radiative forcing: oceans take time to warm up, and delay the effect for
many years (for reasons to be discussed in Chapter 8. Thus, so far the signal of the human imprint
on climate is fairly small. Set against that is a fair amount of noise complicating the detection
of the signal. Climate, even unperturbed by human influence, is not steady from year to year,
but is subject to a certain amount of natural variability. This can be due to volcanic eruptions
and subtle variations in the brightness of the Sun. There are also various natural cycles in the
ocean-atmosphere system that cause the planet to be a bit warmer or colder from one year to
the next. Chief among these is the El Nino phenomenon of the tropical Pacific. During El Nino
years, the coupled dynamics of the tropical ocean and atmosphere causes warm water to spread
throughout the Pacific, leading to a warming of mean surface temperatures both in the tropics
and further afield. La Nina years represent a bunching up of the warm water, and an accentuated
upwelling of cold water, leading to cold years. The two phases alternate erratically, with a typical
time scale of three to five years.

The fact that the signal is hard to detect does not mean that global warming is of little
consequence. The difficulty arises precisely because we are trying to detect the signal before
it becomes so overwhelmingly large as to be obvious. Given the long lifetime of CO2 in the
atmosphere, it would be highly desirable to keep the signal from ever getting that large, as if it
ever does it will take many centuries to subside. Let’s now take a look at some of the data, and
see if there are any signs that the theoretically anticipated warming is really taking place.
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Figure 1.16 shows a times series of estimated global mean surface temperature, based on
recorded temperatures measured with thermometers. There is a lot of arduous statistics and data
archaeology behind this simple little curve. Particularly for the data going into the early part of
the curve, there has been a need to standardize measurements to allow for the various different
ways of taking a temperature reading. Most of the oceanic measurements, for example, were taken
by commercial or military ships of one sort or another, and some of the entries in ships’ logs
record things like ”bait tank temperature” or ”engine inlet temperature.” There has also been
a need to screen out stations that have been strongly affected by local land use changes such as
urbanization, and to avoid spurious trends due to changes in the spatial distribution of temperature
measurements (e.g. fewer Antarctic readings once Antarctic whaling essentially ceased). To help
correct for biases in individual classes of temperature measurements, the long-term trends are
presented as anomalies relative to the average of a station’s long-term average standardized to a
fixed base period (e.g. 1951-1980 for the data in Fig. 1.16).

There is little temperature trend between 1880 and 1920, but between 1920 and 2005 the
temperature has risen by nearly 1C. The rise hasn’t been steady and uninterrupted, however.
It takes the form of an early rise between 1920 and 1940, followed by a 30 year period when
temperatures remained fairly flat, whereafter the temperature rise resumes and has continued to
the present. Given that CO2 has been rising at an ever-increasing rate over the industrial period,
why was the warming interrupted between 1940 and 1970? The answer lies largely in another
effect of human activities on climate. Burning of fossil fuels, and especially coal, releases sulfur
compounds into the atmosphere which form tiny highly reflective droplets known as sulfate aerosols.
By 1995,the effect was finally quantified with sufficient accuracy to permit reasonable estimates of
the effect, and it began to appear that most of the evolution of climate of the twentieth and twenty-
first centuries could be accounted for by a combination of rising greenhouse gases (mainly CO2) due
to human activity, with an offsetting cooling effect of sulfate aerosols. The reason small particles
are so good at scattering light back to space is discussed in Chapter 5, where the optical properties
of sulfate aerosols will be discussed in detail. By the year 2000, the greenhouse warming signal had
unquestionably risen above both the noise of natural variability and the offsetting effect of aerosol
cooling. Sulfur is an active element in many actual and hypothetical planetary atmospheres, and
so the study of sulfate aerosols on Earth informs other planetary problems, including the clouds
of Venus and Venus-like extrasolar planets.

The Earth’s emissions in the microwave spectrum have been monitored continuously by
satellite-borne instruments since 1979, and these observations make it possible in principle to
obtain reconstructions of atmospheric temperature trends which are independent of the somewhat
inhomogeneous surface station network. Processing the microwave data acccurately enough to
obtain reliable temperature trends proved very difficult, and there were many false steps along
the way. Nonetheless, the main problems were resolved by early in the twenty-first century. The
microwave temperature retrievals give the temperature of the atmosphere averaged over fairly deep
layers, in constrast to the surface stations which measure near-surface air temperature. The left
panel of Figure 1.17 shows the satellite retrieval of temperature in layer of the atmosphere known
as the lower troposphere – extending from sea level to roughly 5 km in altitude. The satellite record
tracks the GISS surface station record very closely, with the exception of the very strong 1997 El
Nino, during which the satellite indicates that the lower tropospheric layer warmed considerably
more than the near-surface air. Both satellite and GISS records reproduce the cooling caused by
the El Chicon eruption (which overwhelmed the 1982 El Nino) and the Pinatubo eruption (which
accentuated the La Nina cooling following the 1991 El Nino, leading to a very cold year). The
substantial agreement between the satellite and surface station record proves beyond doubt that
the warming observed in recent times is not an artifact of any supposed inadequacies of the surface
station record.
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Figure 1.16: Global average annual mean surface temperature since 1870, estimated from surface
temperature observations. Data source is the NASA GISS surface station analysis. The tempera-
ture is given as an anomaly relative to the mean temperature for the years 1951 to 1980. To turn
these into actual global mean temperatures in degrees Celsius, add 14C to the anomaly.
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Figure 1.17: Atmospheric temperature time series derived from analysis of microwave satellite
data. Left panel: Mean temperature anomaly for the layer of the atmosphere below about 5km,
compared with the GISS instrumental record. Temperature is given as an anomaly relative to the
same base value as used in the GISS instrumental record. Right panel: Temperature anomaly for
the lower stratosphere (layer from about 15 km to 25 km). In both figures, the El Chichon and
Pinatubo volcanic eruptions are marked. In the left panel, major El Nino events are indicated by
upward open-shafted arrows.
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The situation looks quite different higher up in the atmosphere. The right panel of Fig.
1.17 shows the temperature trend in a portion of the atmosphere called the lower stratosphere,
extending from about 15 to 25 km in altitude. Here, volcanic eruptions produce a pronounced
warming, as opposed to the cooling seen at lower layers. This suggests that volcanic aerosols heat
the upper atmosphere by absorbing sunlight. The pattern of upper level cooling and lower level
warming produced by high altitude solar-absorbing layers will be discussed in Chapter 4, and the
reflective effect of aerosols will be brought into the picture in Chapter 5. Leaving out the warm
spikes associated with volcanic eruptions, the lower stratosphere appears to have undergone a
pronounced cooling over the span of the satellite record. Is stratospheric cooling compatible with
CO2-induced warming in the lower troposphere? This is a Big Question that is resolved in Chapter
4. Ozone destruction also cools the stratosphere, since ozone absorbs sunlight. That portion of
the cooling should go away as ozone recovers as a consequence of the Montreal Protocol banning
ozone-destroying chlorofluorocarbons.

The Big Question of how much the Earth will warm upon a doubling or quadrupling of CO2,
and how fast it will do so, engages a number of associated questions. Insofar as water vapor is itself
a powerful greenhouse gas, any tendency for water vapor content to increase with temperature will
amplify the warming caused by CO2. This is known as water vapor feedback. This feedback is
now considered to be on quite secure ground, but the study of the behavior of water vapor in
the atmosphere offers many challenges, and is a problem of considerable subtlety. In subsequent
chapters, we’ll provide the underpinnings needed for a study of this host of questions. Clouds
present an entirely greater order of difficulty, as they warm the planet through their effect on
outgoing infrared radiation, but cool the planet through their reflection of solar radiation. The net
effect depends on the complex processes determining cloud height, cloud distribution, cloud particle
size and cloud water or ice content. The infrared effects of clouds will be discussed in Chapter 4
and the reflective effects of clouds on sunlight will be discussed in Chapter 5. Uncertainties about
the behavior of clouds are the main reason we do not know precisely how much warmer the planet
will ultimately get if we double the CO2 concentration. Typical predictions of equilibrium global
average warming for a doubling of CO2 range from a low of around 2C to a high of around 6C,
with some potential for even greater warming with a low (but presently unquantifiable) probability.
Because of other uncertainties in the system (particularly the magnitude of the aerosol effect and
especially the indirect aerosol effect on cloud brightness) simulations with a range of different
cloud behaviors can all match the historical climate record so far, but nonetheless yield widely
different forecasts for the future. There is no analysis at present that excludes the possibility of
the higher end of the forecast range, for which the effects would likely be catastrophic. There are
other feedbacks in the climate system that complicate the forecast. These include feedbacks from
melting snow and ice, and from the dynamics of glaciers on land. They also include changes in
vegetation, and changes in the ocean circulation which can affect the delay due to burial of heat
in the deep ocean.

Global warming – perhaps more aptly called ”global climate disruption” – is an event of
geological proportions, but one which is caused by human activities. The natural range of CO2 for
the past 800,000 years, and almost certainly for the entire two million years of the Pleistocene, has
been 180 to 280 molecules per million. Owing to human activities, the CO2 concentration is already
far above the top of the natural range that has prevailed for the entire lifetime of the human species,
and without action will become much higher still. The human species and the natural ecosystems
we share the Earth with have adapted over the Pliocene and Pleistocene to glacial-interglacial
cycles, but a world with doubled CO2 will subject them in the course of two centuries or less to a
temperature jump to levels far warmer than the top of the range to which societies and organisms
have adapted. Even if climate sensitivity is at the low end of the predicted range and if human
societies hold the line at a doubling of CO2, the resulting 2C warming represents a substantial
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climate change; it takes a great deal to change the mean temperature of the entire globe, and
a 2C global mean increase is a summary statistic that masks much higher regional changes and
potentially quite massive effects on sea ice, glaciers and ecosystems. If climate sensitivity turns
out to be at the high end, the warming could be 4C or more, and if that is compounded by an
increase to four times pre-industrial CO2 the global mean increase could reach 8C. That is twice
the degree of warming in the PETM, and though the PETM looks abrupt, it is very likely to have
set in on a longer time scale than it would take human industrial society to burn the remaining
reserves of fossil fuels. If this is allowed to happen, it will take thousands of years for the climate
to recover to a normal state. Could global warming disrupt the natural glacial-interglacial cycle?
What would the consequences of that be? Those are indeed Big Questions.

As seen by paleoclimatologists ten million years in the future, whatever species they may
be, the present era of catastrophic release of fossil fuel carbon will appear as an enigmatic event
which will have a name of its own, much as paleoclimatologists and paleobiologists refer today to
the PETM or the K-T boundary event. The fossil carbon release event will show up in 13C proxies
of the carbon cycle, in dissolution of ocean carbonates through acidification of the ocean, through
mass extinctions arising from rapid warming, and through the moraine record left by retreating
mountain glaciers and land-based ice sheets. As an event, it is unlikely to permanently destroy
the habitability of our planet, any more than did the K-T event or the PETM. Still, a hundred
generations or more of our descendents will be condemned to live in a planetary climate far different
from that which nurtured humanity, and in the company of a greatly impoverished biodiversity.
Biodiversity does recover over the course of millions of years, but that is a very long time to wait,
if indeed there are any of our species left around at the time to do the waiting. Extinction may
not be precisely forever, but it is close enough.

1.13 The fate of the Earth,the lifetime of biospheres

Even if a planet enters a habitable phase at some stage in its life, it will not remain habitable
forever; various kinds of crises can bring its habitability to an abrupt or gradual end. This brings
us to the Big Question of lifetime of biospheres; the answer has implications for how likely it is
that complex or intelligent life will have had time to evolve elsewhere in the Universe.

Certainly, the Earth’s habitability will end when the Sun leaves the main sequence and
expands into a Red Giant. Perhaps some of the outer planets or their satellites will enter a brief
habitable phase at that time, but it will not be long lasting. That particular crisis is about four
billion years in Earth’s future, but other habitability crises are likely to set in long before then.
In particular, as the Sun continues to brighten, at some point the brightness will outstrip the
ability of the silicate weathering process to compensate by drawing down CO2. At that point the
Earth would succumb to a runaway greenhouse, become lethally hot, and eventually lose its water
to space. When will that happen? That is a Big Question, and some current estimates put the
remaining natual lifetime of Earth’s biosphere at as little as a half billion years. Given that it took
four billion years of Earth History before intelligent life emerged, that makes our existence look
like quite a close call. Even before the runaway stage, silicate weathering will draw down CO2 to
the point where most forms of photosynthesis will no longer be able to operate. Can more efficient
forms of photosynthesis fill in the gap? That’s a Big Question as well, but one of a primarily
biological nature that we will not attempt to answer.

As the Sun’s luminosity increases, Earth may become uninhabitable, but other planets in
the Solar System may become more hospitable; in any event they will go through interesting
transformations. Mars will warm up, but given that it has little or no active tectonics to generate
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a new atmosphere, it is unlikely to become Earthlike unless some artificial means is found to give it
a more substantial atmosphere. Could Europa melt and become a waterworld? What will happen
to Titan as the Sun gets brighter?

Alternately the end could come by ice rather than fire. Earth’s life and climate are ultimately
maintained by a brew consisting of solar energy and the CO2 outgassing from the interior. The
CO2 has a warming effect of its own, which can be modified by organisms that intercept it and
transform it into oxygen, methane, or other compounds. If the tectonic release of CO2 ceases,
as it will once the Earth exhausts its interior heat sources, all that will come to an end. There
will be nothing to offset silicate weathering, and CO2 will draw down until the Earth turns into a
snowball – unless the runaway greenhouse from a brightening Sun gets us first.

This class of questions naturally generalizes to the question of how the time scales that
limit the biosphere’s lifetime would be different for planetary systems around other stars. We have
already mentioned that hotter stars have a shorter life on the main sequence, while cooler stars
last longer; the former will have planets with short-lived biospheres compared to the latter. The
question of how long the silicate weathering thermostat can cope with changing stellar luminosity,
and how long outgassing can sustain the climate, is far subtler, and will have interesting depen-
dences on the planet’s size, composition and orbit. There could well be other chemical cycles other
than silicate weathering and CO2 outgassing, which could provide climate regulation; the search
for such possibilities is still in its infancy. There could also be novel habitability crises, associated
with long term evolution of planetary systems with highly eccentric orbits or systems perturbed
by binary star companions.

All this climate catastrophe presupposes no intervention by the inhabitants. In fact, there
are quite realistic possibilities for technologically adept inhabitants to stave off the catastrophe
at least until their star leaves the Main Sequence. A runaway greenhouse could be prevented by
simply reducing the effective stellar brightness, through orbital sunshades or injection of reflecting
aerosols into the upper atmosphere. Indeed, such geoengineering fixes have been proposed to
offset the global warming effect of anthropogenic CO2 increases. They are a rather desperate and
alarming prospect as a solution to global warming, since they offset a climate forcing lasting a
thousand years or more with a fix requiring more or less annual maintainence if catastrophe is not
to strike; far better to keep CO2 from getting dangerously high in the first place. However, if the
alternative a half billion years out is a runaway greenhouse, the risk of maintaining sunshades will
no doubt seem quite acceptable. The loss of CO2 outgassing as Earth’s tectonic cycle ceases also
has a relatively easy technical fix. Inhabitants could use a small portion of the energy received
from the star to cook CO2 back out of carbonates, in a process nearly identical to that by which
cement is manufactured. Given the slow rate of silicate weathering, only modest quantities of
carbonate would have to be processed. All this can be done,but it would appear to require long
term planning and intelligent intervention. A good understanding of the principles of planetary
climate will be needed by any beings contemplating such interventions. This book, we hope, will
be a good place to start.

1.14 For Further Reading

Conditions during the earliest period of Earth’s history, the time required for the crust to form and
cool, and the time evolution of heat flux from the interior of the Earth to the surface are discussed
in:

• Sleep NH, Zahnle K and Neuhoff PS 2001: Initiation of clement surface conditions on the
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earliest Earth, Proc Nat Acad Sci, 98, 3666-3672.

• **TurcottePaper AUTHOR,FF YEAR: Title, Journal, VOL, nn-nn.

The long-term evolution of the brightness of the Sun and similar stars is discussed in:

• Gough, DO 1981: Solar interior structure and luminosity variations, Solar Physics, 74, 21-34.

• Sackmann I-J, Boothroyd AI, and Kraemer KE 1993: Our Sun. III. Present and Future,
Astrophysical Journal, 418, 457-468.

A good review of the history of oxygen on Earth and the proxy methods used to infer this
history can be found in

• Canfield DE 2005: The Early History of Atmospheric Oxygen: Homage to Robert M. Garrels
Annu Rev Earth Planet Sci, 33, 1-36. doi:10.1146/annurev.earth.33.092203.122711

Evolution of Phanerozoic climate, occurrence of glaciations, and evolution of CO2 content
of the atmosphere are discussed in

• Crowley TJ and Berner RA 2001: CO2 and climate change, Science, 292, 870-872. DOI:
10.1126/science.1061664

• Zachos J et al. 2001: Trends, Rhythms and Aberrations in Global Climate 65 Ma to Present,
Science, 292 , 686-693. DOI: 10.1126/science.1059412

Veizer’s long term fossil 18O tropical temperature record, discussed in Crowley and Berrner (2001),
is not generally considered reliable.
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Chapter 2

Thermodynamics in a Nutshell

The atmospheres which are our principal objects of study are made of compressible gases. The
compressibility has a profound effect on the vertical profile of temperature in these atmospheres.
As things progress it will become clear that the vertical temperature variation in turn strongly
influences the planet’s climate. To deal with these effects it will be necessary to know some
thermodynamics – though just a little. This chapter does not purport to be a complete course in
thermodynamics. It can only provide a summary of the key thermodynamic concepts and formulae
needed to treat the basic problems of planetary climate. It is assumed that the student has obtained
(or will obtain) a more fundamental understanding of the general subject of thermodynamics
elsewhere.

2.1 A few observations

The temperature profile in Figure 2.1, measured in the Earth’s tropics introduces most of the
features that are of interest in the study of general planetary atmospheres. It was obtained by
releasing an instrumented balloon (radiosonde) which floats upwards from the ground, and sends
back data on temperature and pressure as it rises. Pressure goes down monotonically with height,
so the lower pressures represent greater altitudes. The units of pressure used in the figure are
millibars (mb). One bar is very nearly the mean sea-level pressure on Earth, and there are 1000
mb in a bar.

Pressure is a very natural vertical coordinate to use. Many devices for measuring atmo-
spheric profiles directly report pressure rather than altitude, since the former is generally easier
to measure. More importantly, most problems in the physics of climate require knowledge only of
the variation of temperature and other quantities with pressure; there are relatively few cases for
which it is necessary to know the actual height corresponding to a given pressure. Pressure is also
important because it is one of the fundamental thermodynamic variables determining the state
of the gas making up the atmosphere. Atmospheres in essence present us with a thermodynamic
diagram conveniently unfolded in height. Throughout, we will use pressure (or its logarithm) as
our fundamental vertical coordinate.

However, for various reasons one might nevertheless want to know at what altitude a given
pressure level lies. By altitude tracking of the balloon, or using the methods to be described in
Section 2.2, the height of the measurement can be obtained in terms of the pressure. The right
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Figure 2.1: Left panel: Temperature profile measured at a point in the tropical Pacific. Right
panel:The corresponding altitude. The measurements were obtained from a radiosonde (”weather
balloon”) launched at 12Z (an abbreviaton for Greenwich Mean Time) on March 15, 1993.



2.1. A FEW OBSERVATIONS 73

panel of Figure 2.1 shows the relation between altitude and pressure for the sounding shown in
Figure 2.1. One can see that the height is very nearly linearly related to the log of the pressure.
This is the reason it is often convenient to plot quantities vs. pressure on a log plot. If po is
representative of the largest pressure of interest, then − ln(p/po) is a nice height-like coordinate,
since it is positive and increases with height.

We can now return to our discussion of the critical aspects of the temperature profile. The
most striking feature of the temperature sounding is that the temperature goes down with altitude.
This is a phenomenon familiar to those who have experienced weather in high mountains, but the
sounding shows that the temperature drop continues to altitudes much higher than sampled at
any mountain peak. This sounding was taken over the Pacific Ocean, so it also shows that the
temperature drop has nothing to do with the presence of a mountain surface. The temperature
drop continues until a critical height, known as the tropopause, and above that height (100mb, or
16 km in this sounding) begins to increase with height. The portion of the atmosphere below the
tropopause is known as the troposphere, whereas the portion immediately above is the stratosphere.
”Tropo” comes from the Greek root for ”turning” (as in ”turning over”), while ”Strato..” refers
to stratification. The reasons for this terminology will become clear shortly. The stratosphere was
discovered in 1900 by Lèon Phillipe Teisserenc de Bort, the French pioneer of instrumented balloon
flights.

The sounding we have shown is typical. In fact, a similar pattern is encountered in the
atmospheres of many other planets, as indicated in Figure 2.2 for Venus, Mars, Jupiter and Titan.
In common with the Earth case, the lower portions of these atmospheres exhibits a sharp decrease of
temperature with height, which gives way to a region of more gently decreasing, or even increasing,
temperature at higher altitudes. In the case of Venus, it is striking that measurements taken with
two completely different techniques, probing different locations of the atmosphere at different
times of day and separated by a decade, nonetheless agree very well in the region of overlap of
the measurements. This attests both to the accuracy of the measurement techniques, and the
lack of what we would generally call ”weather” on Venus, at least insofar as it is reflected in
temperature variability. In the case of Mars, the temperature decrease shows most clearly in the
summer afternoon when the surface is still warm from the Sun. As nignt approaches the upper level
temperature decrease is still notable, but the lower atmosphere cools rapidly leading to a low level
inversion, or region of temperature increase. In the Martian polar winter,the whole atmosphere
cools markedly, and is much more isothermal than in the other cases.

The temperature decrease with height in the Earth’s atmosphere has long been known
from experience of mountain weather. It became a target of quantitative investigation not long
after the invention of the thermometer, and was early recognized as a challenge to those seeking an
understanding of the atmosphere. It was one of the central pre-occupations of the mountaineer and
scientist Horace Bénédict de Saussure (1740-1799). In the quest for an explanation, many false steps
were taken, even by greats such as Fourier, before the correct answer was unveiled. As will be shown
in the remainder of this chapter, some simple ideas based on thermodynamics and vertical mixing
provide at least the core of an explanation for the temperature decrease with height. Towards the
end of Chapter 3 we will introduce a theory of tropopause height that captures the essence of the
problem; the theory of tropopause height will be revisited with increasing sophistication at various
points in Chapters 4 and 7. Nonetheless, some serious gaps remain in the state of understanding of
the rate of decrease of temperature with height, and of the geographical distribution of tropopause
height. In Chapters 3 and 4 we will see that the energy budget of a planet is crucially affected by
the vertical structure of temperature; therefore, a thorough understanding of this feature is central
to any theory of planetary climate.
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Figure 2.2: The vertical profile of temperature for a portion of the atmosphere of Jupiter (upper
left panel), for the atmosphere of Venus (upper right panel) , and for the atmosphere of Mars (lower
left panel) and that of Titan (lower right panel). The Venus Magellan and Mars data derive from
observations of radio transmission through the atmosphere, taken by the Magellan (late 1980’s)
and Global Surveyor orbiters, respectively. The information on the lower portion of the Venus
atmosphere comes from one of the four 1978 Pioneer Venus probes (the others show a similar
pattern). The Jupiter data derives from in situ deceleration measurements of the Galileo probe.
The full Mars profile dataset reveals considerable seasonal and geographical variation. The profiles
shown here were taken in the Southern Hemisphere by Mars Global Surveyor. The warmest one
is in the late afternoon of 1998 in the Summer subtropics while the next warmest is at night-time
under otherwise similar conditions. The coldest Mars sounding shown in the plot is from the winter
South Polar region. 100 Pascal = 1 mb
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2.2 Dry thermodynamics of an ideal gas

2.2.1 The equation of state for an ideal gas

The three thermodynamic variables with which we will mainly be concerned are: temperature
(denoted by T ), pressure ( denoted by p) and density (denoted by ρ). Temperature is proportional
to the average amount of kinetic energy per molecule in the molecules making up the gas. We
will always measure temperature in degrees Kelvin, which are the same as degrees Celsius (or
Centigrade), except offset so that absolute zero – the temperature at which molecular motion ceases
– occurs at zero Kelvin. In Celsius degrees, absolute zero occurs at about -273.15C. Pressure is
defined as the force per unit area exerted on a surface in contact with the gas, in the direction
perpendicular to the surface 1. It is independent of the orientation of the surface, and can be
defined at a given location by making the surface increasingly small. In the mks units we employ
throughout this book , pressure is measured in Pascals (Pa); 1 Pascal is 1 Newton of force per square
meter of area, or equivalently 1 kg/(ms2). For historical reasons, atmospheric pressures are often
measured in ”bars” or ”millibars.” One bar, or equivalently 1000 millibars (mb) is approximately
the mean sea-level pressure of the Earth’s current atmosphere. We will often lapse into using mb as
units of pressure, because the unit sounds comfortable to atmospheric scientists. For calculations,
though, it is important to convert millibars to Pascals. This is easy, because 1 mb = 100 Pa.
Hence, we should all learn to say ”Hectopascal” in place of ”millibar.” It may take some time.
When pressures are quoted in millibars or bars, one must make sure to convert them to Pascals
before using the values in any thermodynamic calculations.

Density is simply the mass of the gas contained in a unit of volume. In mks units, it is
measured in kg/m3.

For a perfect gas, the three thermodynamic variables are related by the perfect gas equation
of state, which can be written

p = knT (2.1)

where p is the pressure, n is the number of molecules per unit volume (which is proportional to
density) and T is the temperature. k is the Boltzmann Thermodynamic Constant, a universal
constant having dimensions of energy per unit temperature. Its value depends only on the units
in which the thermodynamic quantities are measured. To relate n to density, we divide it by the
mass of a single molecule of the gas. Almost all of this mass comes from the protons and neutrons
in the molecule, since electrons weigh next to nothing in comparison. Moreover, the mass of a
neutron differs very little from the mass of a proton, so for our purposes the mass of the molecule
can be taken to be M · µ where µ is the mass of a proton and M is the molecular weight – an
integer giving the count of neutrons and protons in the molecule. (The equivalent count for an
individual atom of an element is the atomic weight). The density is thus ρ = n ·M ·µ). If we define
the Universal Gas Constant as R∗ ≡ k/µ the perfect gas equation of state can be rewritten

p =
R∗

M
ρT (2.2)

In mks units, R∗ = 8314.5Pa ·m3kg−1K−1 = 8314.5(m/s)2K−1 We can also define a gas constant
R = R∗/M particular to the gas in question. For example, dry Earth air has a mean molecular
weight of 28.97, so Rdryair = 287 (m/s)2K−1, in mks units.

1Pressure can equivalently be defined as the amount of momentum per unit area per unit time which passes in
both directions through a small hoop placed in the gas. This definition is equivalent to the exerted-force definition
because when a molecule with velocity v and mass m bounces elastically off a surface, the momentum change is 2mv,
but only half of the molecules are moving toward the surface at any given time. The momentum flux definition, in
contrast, counts molecules going through the hoop in both directions
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If µ is measured in kilograms, then 1/µ is the number of protons needed to make up a
kilogram. This large number is known as a Mole, and is commonly used as a unit of measurement
of numbers of molecules, just as one commonly counts eggs by the dozen. For any substance,
a quantity of that substance whose mass in kilograms is equal to the molecular weight of the
substance will contain one Mole of molecules. For example, 2 kg of H2 is a Mole of Hydrogen
molecules, while 32 kg of the most common form of O2 is a Mole of molecular Oxygen. If n were
measured in Moles/m3 instead of molecules per m3, then density would be ρ = n ·M . One can
also define the gram-mole (or mole for short), which is the number of protons needed to make a
gram; this number is known as Avogadro’s number, and is approximately 6.022 · 1023.

Generally speaking, a gas obeys the perfect gas law when it is tenuous enough that the
energy stored in forces between the molecules making up the gas is negligible. Deviations from the
perfect gas law can be important for the dense atmosphere of Venus, but for the purposes of the
current atmosphere of Earth or Mars, or the upper part of the Jovian or Venusian atmosphere, the
perfect gas law can be regarded as an accurate model of the thermodynamics– in fact, ”perfect,”
one might say.

An extension of the concept of a perfect gas is the law of partial pressures. This states that,
in a mixture of gases in a given volume, each component gas behaves just as it would if it occupied
the volume alone. The pressure due to one component gas is called the partial pressure of that
gas. Consider a gas which is a mixture of substance A (with molecular weight MA) and substance
B (with molecular weight MB). The partial pressures of the two gases are

pA = knAT, pB = knBT (2.3)

or equivalently,
pA = RAρAT, pB = RBρBT (2.4)

where RA = R∗/MA and RB = R∗/MB . The same temperature appears in both equations, since
thermodynamic equilibrium dictates that all components of the system have the same temperature.
The ratio of partial pressures of any two components of a gas is a convenient way to describe the
composition of the gas. From Eq. 2.3, pA/pB = nA/nB , so the ratio of partial pressure of A to
that of B is also the ratio of number of molecules of A to the number of molecules of B. This ratio
is called the molar mixing ratio. When we refer to a mixing ratio without qualification, we will
generally mean the molar mixing ratio. Alternately, one can describe the composition in terms of
the ratio of partial pressure of one component to total presssure of the gas (pA/(pA + pB) in the
two-component example). Summing the two partial pressure equations in Eq. 2.3, we see that
this is also the ratio of number of molecules of A to total number of molecules; hence we will use
the term molar concentration for this ratio 2. If ηA is the molar mixing ratio of A to B, then the
molar concentration is ηA/(1+ ηA), from which we see that for the molar concentration and molar
mixing ratio are nearly the same for substances which are very dilute (i.e. ηA � 1).

Exercise 2.2.1 Show that a mixture of gases with molar concentrations ηA = nA/(nA + nB) and
ηB = nB/(nA + nB) behaves like a perfect gas with mean molecular weight M = ηAMA + ηBMB.

2The term volumetric mixing ratio or concentration is often used interchangeably with the term molar, as in
”ppmv” for ”parts per million by volume.” The reason for this nomenclature is that the volume occupied by a given
quantity of gas at a fixed temperature and pressure is proportional to the number of molecules of the gas contained
in that quantity. To see this, write n = N/V , where N is the number of molecules and V is the volume they occupy.
Then, the ideal gas law can be written in the alternate form V = (kT/p)N . Hence the ratio of standardized volumes
is equal to the molar mixing ratio, and so forth. Abbreviations like ”ppmv” for molar mixing ratios are common
and convenient, because the ”v” can unambiguously remind us that we are talking about a volumetric (i.e. molar)
mixing ratio or concentration, whereas in an abbreviation like ”ppmm” one is left wondering whether the second
”m” means ”mass” or ”molar.”
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(i.e. derive the expression relating total pressure pA + pB to total density ρA + ρB and identify
the effective gas constant). Compute the mean molecular weight of dry Earth air. (Dry Earth air
consists primarily of 78.084% N2, 20.947% O2, and .934% Ar, by count of molecules.)

The mass mixing ratio is the ratio of the mass of substance A to that of substance B in a
given parcel of gas, i.e. ρA/ρB . From Eq. 2.4 it is related to the molar mixing ratio by

ρA

ρB
=

MA

MB

pA

pB
(2.5)

Throughout this book,we will use the symbol r to denote mass mixing ratios and η for molar mixing
ratios, with subscripts added as necessary to distinguish the species involved. Yet another measure
of composition is specific concentration, defined as the ratio of the mass of a given substance to
the total mass of the parcel (e.g. ρA/(ρA + ρB) in the two-component case). We’ll use the symbol
q, with subscripts as necessary, to denote the specific concentration of a substance. Using the law
of partial pressures, the specific concentration of substance A in a mixture is related to the molar
concentration by

ρA

ρtot
=

MA

M̄

pA

ptot
(2.6)

where M̄ is the mean molecular weight of the mixture, with the mean being computed using
weighting according to molar concentrations of the species, as in Exercise 2.2.1.

All of the ratios we have just defined are convenient to use because, unlike densities, they
remain unchanged as a parcel of air expands or contracts, provided the constituents under consid-
eration do not undergo condensation, chemical reaction or other forms of internal sources or sinks.
Hence, for a compressible gas, two components A and B are well-mixed relative to each other if
the mixing ratio between them is independant of position.

Constituents will tend to become well mixed over a great depth of the atmosphere if they are
created or destroyed slowly, if at all, relative to the characteristic time required for mixing. In the
Earth’s atmosphere, the mixing ratio of oxygen to nitrogen is virtually constant up to about 80km
above the surface. The mixing ratio of carbon dioxide in air can vary considerably in the vicinity
of sources at the surface, such as urban areas where much fuel is burned, or under forest canopies
when photosynthesis is active. Away from the surface, however, the carbon dioxide mixing ratio
varies little. Variations of a few parts per million can be detected in the relatively slowly mixed
stratosphere, associated with the industrial-era upward trend in fossil fuel carbon dioxide emissions.
Small seasonal and interhemispheric fluctuations in the tropospheric mixing ratio, associated with
variations in the surface sources, can also be detected. For most purposes, though, carbon dioxide
can be regarded as well mixed throughout the atmosphere. In contrast, water vapor has a strong
internal sink in Earth’s atmosphere, because it is condensible there; hence its mixing ratio shows
considerable vertical and horizontal variations. Carbon dioxide, methane and ammonia are not
condensible on Earth at present, but their condensation can become significant in colder planetary
atmospheres.

Exercise 2.2.2 (a) In the year 2000, the concentration of CO2 in the atmosphere was about 370
parts per million molar. What is the ratio pCO2/ptot? Estimate pCO2 in mb at sea level. Does the
molar concentration differ significantly from the molar mixing ratio? What is the mass mixing
ratio of CO2 in air? What is the mass mixing ratio of carbon (in the form of CO2) in air – i.e.
how many kilograms of carbon would have to be burned into CO2 in order to produce the CO2 in
1 kg of air? Note: The mean molecular weight of air is about 29. (b) The molar concentration
of O2 in Earth air is about 20%. How many grams of O2 does a 1 liter breath of air contain at
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sea level (1000mb)? At the top of Qomolangma (a.k.a. ”Mt. Everest,” about 300mb)? Does the
temperature of the air (within reasonable limits) affect your answer much?

2.2.2 Specific heat and conservation of energy

Conservation of energy is one of the three great pillars upon which the edifice of thermodynamics
rests. When expressed in terms of changes in the state of matter, it is known as the �First Law
of Thermodynamics. When a gas expands or contracts, it does work by pushing against the
environment as its boundaries move. Since pressure is force per unit area, and work is force times
distance, the work done in the course of an expansion of volume dV is pdV . This is the amount
of energy that must be added to the parcel of gas to allow the increase in volume to take place.
For atmospheric purposes, it is more convenient to do write all thermodynamic relations on a per
unit mass basis. Dividing V by the mass contained in the volume yields ρ−1, whence the work per
unit mass is pdρ−1. This is not the end of energy accounting. Changing the temperature of a unit
mass of the substance while holding volume fixed changes the energy stored in the various motions
of the molecules by an amount cvdT , where cv is a proportionality factor known as the specific
heat at constant volume. For example it takes about 720 Joules of energy to raise the temperature
of 1kg of air by 1K while holding the volume fixed. For ideal gases, the specific heat can depend
on temperature, though the dependence is typically weak. For non-ideal gases, specific heat can
depend on pressure as well.

Exercise 2.2.3 There are 20 students and one professor in a well-insulated classroom measuring
20 meters by 20 meters by 3 meters. Each person in the classroom puts out energy at a rate of
100 Watts (1 Watt = 1 Joule/second). The classroom is dark, except for a computer and LCD
projector which together consume power at a rate of 200 Watts. The classroom is filled with air
at a pressure of 1000mb (no extra charge). The room is sealed so no air can enter or leave, and
has an initial temperature of 290K. How much does the temperature of the classroom rise during
the course of a 1 hour lecture?

Combining the two contributions to energy change we find the expression for the amount
of energy that must be added per unit mass in order to accomplish a change of both temperature
and volume:

δQ = cvdT + pdρ−1 (2.7)

Using the perfect gas law, the heat balance can be re-written in the form

δQ = cvdT + d(pρ−1)− ρ−1dp = (cv + R)dT − ρ−1dp (2.8)

From this relation, we can identify the specific heat at constant pressure, cp ≡ cv + R, which is the
amount of energy needed to warm a unit mass by 1K while allowing it to expand enough to keep
pressure constant.

The units in which we measure temperature are an artifact of the marks one researcher or
other once decided to put on some device that responded to heat and cold. Since temperature is
proportional to the energy per molecule of a substance, it would make sense to set the propor-
tionality constant to unity and simply use energy as the measure of temperature. This not being
common practice, one has occasion to make use of the Boltzmann thermodynamic constant, k,
which expresses the proportionality between temperature and energy. More precisely, each degree
of freedom in a system with temperature T has a mean energy 1

2kT . For example, a gas made of
rigid spherical atoms has three degrees of freedom per atom (one for each direction it can move),
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and therefore each atom has energy 3
2kT on average; a molecule which could store energy in the

form of rotation or vibration would have more degrees of freedom, and therefore each molecule
would have more energy at any given temperature. The energy-temperature relation is made pos-
sible by an important thermodynamic principle, the equipartion principle, which states that in
equilibrium, each degree of freedom accessible to a system gets an equal share of the total energy
of the system. In constrast to physical constants like the speed of light, the Boltzmann constant
should not be considered a fundamental constant of the Universe. It is just a unit conversion
factor.

2.2.3 Entropy, reversibility and Potential temperature; The Second Law

One cannot use Eqn 2.8 to define a ”heat content” Q of a state (p, T ) relative to a reference state
(po, To), because the amount of heat needed to go from one state to another depends on the path
in pressure-temperature space taken to get there; the right hand side of Eqn 2.8 is not an exact
differential. However, it can be made into an exact differential by dividing the equation by T and
using the perfect gas law as follows:

ds ≡ δQ

T
= cp

dT

T
−R

dp

p
= cpd ln(Tp−R/cp) (2.9)

assuming cp to be constant. This equation defines the entropy, s ≡ cp ln (Tp−R/cp). (Entropy can
still be defined if cp is not constant, but the expression is somewhat more complicated and need
not concern us for the moment.) Entropy is a nice quantity to work with because it is a state
variable – its change between two states is independent of the path taken to get from one to the
other. A process affecting a parcel of matter is said to be adiabatic if it occurs without addition
or loss of heat from the parcel. By definition, δQ = 0 for adiabatic processes. In consequence,
adiabatic processes leave entropy unchanged. They are reversible. Entropy can also be defined for
gases whose specific heat depends on temperature and pressure, and for non-ideal gases, but the
expression is more complicated.

The Second Law of Thermodynamics states that entropy never decreases for energetically
closed systems – systems to which energy is neither added nor subtracted in the course of their evo-
lution. The formal derivation of the law from the microscopic properties of molecular interactions
is in many ways an unfinished work of science, but the tendency towards an increase in entropy – an
increase in disorder – seems to be a nearly universal property of systems consisting of a great many
interacting components. The Second Law is perhaps more intuitive when restated in the following
way: In an energetically closed system, heat flows from a hotter part of the system to a colder part
of the system, causing the system to evolve toward a state of uniform temperature. To see that this
statement is equivalent to the entropy-increase principle, consider a thermally insulated box of gas
having uniform pressure, but within which the left half of the mass is at temperature T1 and the
right half of the mass is at temperature T2 < T1. Now suppose that we transfer an amount of heat
δQ from the left half of the box to the right half. This transfer leaves the net energy unchanged,
but it changes the entropy. Specifically, according to Eq. 2.9, the entropy change summed over
the two halves of the gas is ds = ( 1

T2
− 1

T1
)δQ. Since T2 < T1, this change is positive only if

δQ > 0, representing a transfer from the hotter to the colder portion of the gas. Entropy can be
increased by further heat transfers until T1 = T2, at which point the maximum entropy state has
been attained.

The Second Law endows the Universe with an arrow of time. If one watches a movie of a
closed system and sees that the system starts with large fluctuations of temperature (low entropy)
and proceeds to a state of uniform temperature (high entropy), one knows that time is running
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Figure 2.3: The dry potential temperature profile for the sounding in Figure 2.1

forward. If one sees a thermally homogeneous object spontaneously generate large temperature
inhomogeneities, then one knows that the movie is being run backwards. Note that the Second
Law applies only to closed systems. The entropy of a subcomponent can decrease, if it exchanges
energy with the outside world and increases the entropy of the rest of the Universe. This is how a
refrigerator works.

Entropy can also be used to determine how the temperature of an air parcel changes when
it is compressed or expanded adiabatically. This is important because it tells us what happens to
temperature is a bit of the atmosphere is lifted from low altitudes (where the pressure is high) to
higher altitudes (where the pressure is lower), provided the lifting occurs so fast that the air parcel
has little time to exchange heat with its surroundings. If the initial temperature and pressure
are (T, p), then conservation of entropy tells us that the temperature To found upon adiabatically
compressing or expanding to pressure po is given by Tp−R/cp = Top

−R/cp
o This leads us to define

the potential temperature

θ = T (
p

po
)−R/cp (2.10)

which is simply the temperature an air parcel would have if reduced adiabatically to a reference
pressure po. Like entropy, potential temperature is conserved for adiabatic processes.

To understand why the presence of cold air above warm air in the sounding of Figure
2.1 does not succumb immediately to instability, we need only look at the corresponding profile of
potential temperature, shown in Figure 2.3. This figure shows that potential temperature increases
monotonically with height. This profile tells us that the air aloft is cold, but that if it were pushed
down to lower altitudes, compression would warm it to the point that it is warmer than the
surrounding air, and thus being positively buoyant, will tend to float back up to its original level
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rather than continuing its descent. We see also where the stratosphere gets its name: potential
temperature increases very strongly with height there, so air parcels are very resistant to vertical
displacement. This part of the atmosphere is therefore strongly stratified.

The troposphere is stable, but has much weaker gradients of θ. In a compressible atmosphere,
a well-stirred layer would have constant θ rather than constant T , since it is the former that is
conserved for adiabatic processes such as would be caused by rapid vertical displacements. This
is the essence of the explanation for why temperature decreases with height: turbulent stirring
relaxes the troposphere towards constant θ, yielding the dry adiabat

T (p) = θ · ( p

po
)R/cp (2.11)

In this formula, θ has the constant value T (po). If we introduce the new vertical coordinate
ζ = − ln(p/po), then Equation 2.11 can be re-written T (p) = T (po)exp(−(R/cp)ζ), from which we
see that a dry adiabat shows up as a straight line on a plot of the logarithm of temperature vs.
the logarithm of pressure.

It is evident from Figure 2.3 that something prevents θ from becoming completely well
mixed. An equivalent way of seeing this is to compare the observed temperature profile with the
dry adiabat. For example, if the air at 1000mb in Figure 2.3, having temperature 298K, were lifted
dry-adiabatically to the tropopause, where the pressure is 100mb, then the temperature would be
298.( 100

1000 )2/7, i.e. 154.3K (using the value R/cp = 2/7 for Earth air). This is much colder than
the observed temperature, which is 188K. We will see shortly that in the Earth’s atmosphere,
condensation of water vapor is one of the factors in play, though it is not the only one affecting the
tropospheric temperature profile. The question of what determines the tropospheric θ gradient is
at present still largely unsettled, particularly outside the Tropics.

It is no accident that the value of R/cp for air lies close to the ratio of two small integers.
It is a consequence of the equipartition principle. Using methods of statistical thermodynamics, it
can be shown that a gas made up of molecules with n degrees of freedom has R/cp = 2/(n + 2).
Using the expression for the gas constant in terms of the specific heats, the adiabatic coefficient
can also be written as R/cp = 1− 1/γ, where γ = cp/cv; for exact equipartion, γ = 1 + 2/n. The
measured values of γ for a few common atmospheric gases are shown in Table 2.1. Helium comes
close to the theoretical value for a molecule with no internal degrees of freedom, underscoring that
excitation of electron motions plays little role in heat storage for typical planetary temperatures.
The diatomic molecules have values closest to the theoretical value for n = 5, one short of what one
would expect from adding two rotational and one vibrational internal degrees of freedom. Among
the triatomic molecules, water acts roughly as if it had n = 6 while carbon dioxide is closer to n = 7.
The two most complex molecules, methane and ammonia, are also characterized by n = 7. The
failure of thermodynamics to access all the degrees of freedom classically available to a molecule
is a consequence of quantum theory. Since the energy stored in states of motion of a molecule in
fact comes in discrete-sized chunks, or ”quanta,” one can have a situation where a molecule hardly
ever gets enough energy from a collision to excite even a single vibrational degree of freedom, for
example, leading to the phenomenon of partial excitation or even non-excitation of certain classical
degrees of freedom. This is one of many ways that the quantum theory, operating on exceedingly
tiny spatial scales, exerts a crucial control over macroscopic properties of matter that can effect
the very habitability of the Universe. Generally speaking, the higher the temperature gets, the
more easy it is to excite internal degrees of freedom, leading to a decrease in γ. This quantum
effect is the chief reason that specific heats vary somewhat with temperature.

Exercise 2.2.4 (a) A commercial jet airliner cruises at an altitude of 300mb. The air outside has
a temperature of 240K. To enable the passengers to breathe, the ambient air is compressed to
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H2O CH4 CO2 N2 O2 H2 He NH3

Crit. point T 647.1 190.44 304.2 126.2 154.54 33.2 5.1 405.5
Crit. point p 221.e5 45.96e5 73.825e5 34.0e5 50.43e5 12.98e5 2.28e5 112.8
Triple point T 273.15 90.67 216.54 63.14 54.3 13.95 2.17 195.4
Triple point p 611. .117e5 5.185e5 .1253e5 .0015e5 .072e5 .0507e5 .061e5
L vap(b.p.) 22.55e5 5.1e5 – 1.98e5 2.13e5 4.54e5 .203e5 13.71e5
L vap(t.p.) 24.93e5 5.36e5 3.97e5 2.18e5 2.42e5 ?? ?? 16.58e5
L fusion 3.34e5 .5868e5 1.96e5 .2573e5 .139e5 .582e5 ?? 3.314e5
L sublimation 28.4e5 5.95e5 5.93e5 2.437e5 2.56e5 ?? ?? 19.89e5
ρ liq(b.p.) 958.4 450.2 1032. 808.6 1141. 70.97 124.96 682.
ρ liq(t.p.) 999.87 ?? 1110. ?? 1307. ?? ?? 734.2
ρ solid 917. 509.3 1562. 1026. 1351. 88. 200. 822.6
cp(0C/1bar) 1847. 2195. 820. 1037. 916. 14230. 5196. 2060.
γ(cp/cv) 1.331 1.305 1.294 1.403 1.393 1.384 1.664 1.309

Table 2.1: Thermodynamic properties of selected gases. Latent heats of vaporization are given
at both the boiling point (the point where saturation vapor pressure reaches 1bar) and the triple
point. Liquid densities are given at the boiling point and the triple point. For CO2 the ’boiling
point’ is undefined, so the liquid density is given at 253K/20bar instead. Note that the maximum
density of liquid water is 1000.00kg/m3 and occurs at −4C. Densities of solids are given at or near
the triple point. All units are mks, so pressures are quoted as Pa with the appropriate exponent.
Thus, 1bar is written as 1e5 in the table.

a cabin pressure of 1000mb. What would the cabin temperature be if the air were compressed
adiabatically? How do you think airlines deal with this problem? (b) Discuss whether the lower
portion of the Venus temperature profile shown in Figure 2.2 is on the dry CO2 adiabat. Do the
same for the Summer afternoon Mars sounding. (c) Assume that the Jupiter sounding is on a dry
adiabat, and estimate the value of R/cp for the atmosphere. Based on your result, what is the
dominant constituent of the Jovian atmosphere likely to be? What other gas might be mixed with
the dominant one?

2.3 Static stability of inhomogeneous mixtures

An atmosphere is statically unstable if an air parcel displaced from its original position tends to
continue rising or sinking instead of returning to its original position. Such a state will tend to
mix itself until it becomes stable. For a well-mixed atmosphere, the potential temperature profile
tells the whole story about static stability, since, according to the ideal gas law, the density of an
air parcel with potential temperature θ0 will be ρ0 = p1/(Rθ0 · (p1/p0)R/cp) upon being elevated
to an altitude with pressure p1 < p0. The ambient density there is ρ1 = p1/(Rθ1 · (p1/p0)R/cp).
The displaced parcel will be negatively buoyant and return toward its original position if ρ0 > ρ1,
which is true if and only if θ0 < θ1, i.e. if the potential temperature increases with height. For
an inhomogeneous atmosphere, this is no longer the case, since the gas constant R depends on the
mean molecular weight of the mixture, which varies from place to place. As an example, we may
consider an atmosphere which has uniform θ, but which consists of pure N2 for p > p0 and pure
CO2 for p < p0. In this case, the difference in density between a lifted N2 parcel and that of the
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surrounding CO2 is

ρ0 − ρ1 =
1
θ
(

1
RN2(p1/p0)−(R/cp)N2

− 1
RCO2(p1/p0)−(R/cp)CO2

) (2.12)

The value of R/cp differs somewhat between N2 and CO2 but the main effect in this equation
comes from the differing values of the gas constant. Since N2 has lower molecular weight (28)
than CO2 (44), the gas constant for N2 is considerably greater than the gas constant for CO2.
In consequence, ρ0 < ρ1, the lifted nitrogen parcel is positively buoyant, and the nitrogen layer
will tend to spontaneously mix itself with the CO2 layer despite the fact that both have the same
potential temperature.

The phenomenon is very familiar: it is why helium balloons rise in air, even when they are at
the same temperature as their surroundings. The low molecular weight of helium makes it lighter
(i.e. lower density) than air having the same temperature and pressure.

Exercise 2.3.1 Make sense of the following statement: ”For the Earth’s atmosphere, moist air is
lighter than dry air.” Would this still be true for a planet whose atmosphere is mainly H2?

There are a number of ways to deal with the effect of composition on static stability. For
the case of moisture on the Earth, it is common to define a virtual temperature, which is the
temperature at which the gas law for dry air would yield the same density as the true gas law
taking into account the lightening effect of water vapor. This approach has its virtues, but we find
it less confusing to deal instead with potential density, which is the density an air parcel would
have if reduced adiabatically to a standard reference pressure. Using the gas law, and the fact that
mixing ratios are conserved (whence R/cp is conserved on adiabatic compression of the parcel),
the potential density is

ρp =
po

Rθ
=

po

RT
(

p

po
)R/cp (2.13)

From this equation it is evident that for a well-mixed system, R is independent of p, so that
the system is stable precisely when θ increases with height. For an inhomogeneous mixture, the
variations in R associated with varying composition can stabilize or destabilize the system. The
variations in cp can have a similar, though generally less pronounced, effect.

2.4 The hydrostatic relation

The hydrostatic relation relates pressure to altitude and the mass distribution of the atmosphere,
and provides the chief reason that pressure is the most natural vertical coordinate to use in most
atmospheric problems. Consider a column of any substance at rest, and suppose that the density
of the substance as a function of height z is given by ρ(z). Suppose further that the range of
altitudes being considered is small enough that the acceleration of gravity is essentially constant;
The magnitude of this acceleration will be called g, and the force of gravity is taken to point along
the direction of decreasing z. Now, consider a slice of the column with vertical thickness dz, having
cross sectional area A in the horizontal direction. Since pressure is simply force per unit area, then
the change in pressure from the base of this slice to the top of this slice is just the force exerted
by the mass. By Newton’s law, then, we have

Adp = −Agdm = −Agρdz (2.14)
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where dm is the increment of mass in the column per unit area. An immediate consequence of this
relation is that

dm = −dp

g
(2.15)

which states that the amount of mass in a slab of atmosphere is proportional to the thickness of
that slab, measured in pressure coordinates. A further consequence, upon dividing by dz is the
relation

dp

dz
= −ρg (2.16)

This differential equation expresses the hydrostatic relation. It is exact if the substance is at rest
(hence the ”static”), but if the material of the column is in motion, the relation is still approximately
satisfied provided the acceleration is sufficiently small, compared to the acceleration of gravity. In
practice, the hydrostatic relation is very accurate for most problems involving large scale motions in
planetary atmospheres. It would not be a good approximation within small scale intense updrafts
or downdrafts where the acceleration of the fluid may be large. Derivation of the precise conditions
under which the hydrostatic approximation holds requires consideration of the equations of fluid
motion, which will be taken up in a sequel to the present book.

An important consequence of the hydrostatic relation is that it enables us to determine
the total mass of an atmosphere through measurements of pressure taken at the surface alone.
Integrating Eqn 2.15 from the ground (p = ps) to space (p = 0) yields the relation

m =
ps

g
(2.17)

where m is the total mass of the atmosphere located over a unit area of the planet’s surface.
Note that this relation presumes that the depth of the layer containing almost all the mass of the
atmosphere is sufficiently shallow that gravity can be considered constant throughout the layer.
Given that gravity decays inversely with the square of distance from the planet’s center, this is
equivalent to saying that the atmosphere must be shallow compared to the radius of the planet. For
a well mixed substance A with mass-specific concentration κA relative to the whole atmosphere,
the mass of substance A per square meter of the planet’s surface is just mκA

Using the perfect gas law to eliminate ρ from Eqn 2.16 yields

dp

dz
= − g

RT
p (2.18)

where R is the gas constant for the mixture making up the atmosphere. This has the solution

p(z) = ps exp(− g

RT̄
z), T̄ (z) = (

1
z

∫ z

0

T−1dz)−1 (2.19)

Here, T̄ (z) is the harmonic mean of temperature in the layer between the ground and altitude z.
If temperature is constant, then pressure decays exponentially with scale height RT/g. Because
temperature is measured relative to absolute zero, the mean temperature T̄ (z) can be relatively
constant despite fairly large variations of temperature within the layer. In consequence, pressure
typically decays roughly exponentially with height even when temperature is altitude-dependent.

Exercise 2.4.1 Compute the mass of the Earth’s atmosphere, assuming a mean surface pressure of
1000mb. (The Earth’s radius is 6378km, and the acceleration of its gravity is 9.8m/s2). Compute
the mass of the Martian atmosphere, assuming a mean surface pressure of 6mb. (Mars’ radius is
3390km, and the acceleration of its gravity is 3.7m/s2.)
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Note that the hydrostatic relation applies only to the total pressure of all constituents; it
does not apply to partial pressures individually. However, in the special case in which the gases are
well mixed, the total mass of each well-mixed component can still be determined from surface data
alone. One simply multiplies the total mass obtained from surface pressure, by the appropriate
(constant) mass-specific concentration.

In the study of atmospheric dynamics, the hydrostatic equation is used to compute the
pressure gradients which drive the great atmospheric circulations. Outside of dynamics, there are
rather few problems in physics of climate that require one to know the altitude corresponding to
a given pressure level. Our main use of the hydrostatic relation in this book will be in the form of
Eqn 2.15, which tells us the mass between two pressure surfaces.

The hydrostatic relation also allows us to derive a useful alternate form of the heat budget,
by re-writing the heat balance equation as follows:

δQ = cpdT − ρ−1dp = cpdT − ρ−1 dp

dz
dz = d(cpT + gz) (2.20)

assuming cp to be constant. The quantity cpT + gz is known as the dry static energy. Dry static
energy provides a more convenient basis for atmospheric energy budgets than entropy, since changes
in dry static energy following an air parcel are equal to the net energy added to or removed from
the parcel by heat sources such as solar radiation.

2.5 Thermodynamics of phase change

When a substance changes from one form to another (e.g. water vapor condensing into liquid
water or gaseous carbon dioxide condensing into dry ice) energy is released or absorbed even if
the temperature of the mass is unchanged after the transformation has taken place. This happens
because the amount of energy stored in the form of intermolecular interactions is generally different
from one form, or phase to another. The amount of energy released when a unit of mass of a
substance changes from one phase to another, holding temperature constant, is known as the
latent heat associated with that phase change. By convention, latent heats are stated as positive
numbers, with the phase change going in the direction that releases energy. Phase changes are
reversible. If one kilogram of matter releases L joules of energy in going from phase A to phase B,
it will take the same L joules of energy to turn the mass back into phase A. The units of latent
heat are energy per unit mass (Joules per kilogram in mks units).

Condensible substances play a central role in the atmospheres of many planets and satellites.
On Earth, it is water that condenses, both into liquid water and ice. On Mars, CO2 condenses
into dry ice in clouds and in the form of frost at the surface. On Jupiter and Saturn, not only
water but ammonia (NH3) and a number of other substances condense. The thick clouds of Venus
are composed of condensed sulfuric acid. On Titan it is methane, and on Neptune’s moon Triton
nitrogen itself condenses. Table 2.1 lists the latent heats for the liquid-vapor (evaporation), liquid-
solid (fusion) and solid-vapor (sublimation) phase transitions are given for a number of common
constituents of planetary atmospheres. Water has an unusually large latent heat; the condensation
of 1 kg of water vapor into ice releases nearly five times as much energy as the condensation of 1kg
of carbon dioxide gas into dry ice. This is why the relatively small amount of water vapor in Earth’s
present atmosphere can nonetheless have a great effect on atmospheric structure and dynamics.
Ammonia also has an unusually large latent heat, though not so much so as water. In both cases,
the anomalous latent heat arises from the considerable energy needed to break hydrogen bonds in
the condensed phase.
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Like most thermodynamic properties, latent heat varies somewhat with temperature. For
example, the latent heat of vaporization of water is 2.5 · 106J/kg at 0C, but only 2.26 · 106J/kg
at 100C. For precise calculations, the variation of latent heat must be taken into account, but
nonetheless for many purposes it will be sufficient to assume latent heat to be constant over fairly
broad temperature ranges.

The three main phases of interest are solid, liquid and gas (also called vapor), though other
phases can be important in exotic circumstances. There is generally a triple point in temperature-
pressure space where all three phases can co-exist. Above the triple point temperature, the
substance undergoes a vapor-liquid phase transition as temperature is decreased or pressure is
increased; below the triple point temperature vapor condenses directly into solid, once thermo-
dynamic equilibrium has been attained. For water, the triple point occurs at a temperature of
273.15K and pressure of 6.11mb (see Table 2.1 for other gases). Generally, the triple point temper-
ature can also be taken as an approximation to the ”freezing point” – the temperature at which
a liquid becomes solid – because the freezing temperature varies only weakly with pressure until
very large pressures are reached. Though we will generally take the freezing point to be identical
to the triple point in our discussions, the effect of pressure on freezing of liquid can nonetheless be
of great importance at the base of glaciers and in the interior of icy planets or moons, and perhaps
also in very dense,cold atmospheres.

Typically, the solid phase is more dense than the liquid phase, but water again is exceptional.
Water ice floats on liquid water, whereas carbon dioxide ice would sink in an ocean of liquid carbon
dioxide, and methane ice would sink in a methane lake on Titan. This has profound consequences
for the climates of planets with a water ocean such as Earth has, since ice formed in winter remains
near the surface where it can be more readily melted when summer arrives.

Exercise 2.5.1 Per square meter, how many Joules of energy would be required to evaporate a
puddle of Methane on Titan, having a depth of 20m?

Atmospheres can transport energy from one place to another by heating an air parcel by an
amount δT , moving the parcel vertically or horizontally, and then cooling it down to its original
temperature. This process moves an amount of heat cpδT per unit mass of the parcel. Latent heat
provides an alternate way to transport energy, since energy can be used to evaporate liquid into an
air parcel until its mixing ratio increases by δr, moving it and then condensing the substance until
the mixing ratio returns to its original value. This process transports an amount of heat Lδr per
unit mass of the planet’s uncondensible air, and can be much more effective at transporting heat
than inducing temperature fluctuations, especially when the latent heat is large. ”Ordinary” heat
– the kind that feels hot when you touch it, and which is stored in the form of the temperature
increase of a substance – is known in atmospheric circles as ”sensible” heat.

All gases are condensible at low enough temperatures or high enough pressures. On Earth
(in the present climate) CO2 is not a condensible substance, but on Mars it is. The ability of
a gas to condense is characterized by the saturation vapor pressure, psat of that gas, which may
be a function of any number of thermodynamic variables. When the partial pressure pA of gas
A is below psat,A, more of the gas can be added, raising the partial pressure, without causing
condensation. However, once the partial pressure reaches psat,A, any further addition of A will
condense out. The state pA = psat,A is referred to as ”saturated” with regard to substance A. Each
condensed state (e.g. liquid or solid) will have its own distinct saturation vapor pressure. Rather
remarkably, for a mixture of perfect gases, the saturation vapor pressure of each component is
independent of the presence of the other gases. Water vapor mixed with 1000 mb worth of dry air
at a temperature of 300K will condense when it reaches a partial pressure of 38mb; a box of pure
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water vapor at 300K condenses at precisely the same 38mb. If a substance ”A” has partial pressure
pA that is below the saturation vapor pressure, it is said to be ”subsaturated,” or ”unsaturated.”
The degree of subsaturation is measured by the saturation ratio pa/psat,A, which is often stated as
a percent. Applied to water vapor, this ratio is called the relative humidity, and one often speaks of
the relative humidity of other substances, e.g. ”methane relative humidity” instead of saturation
ratios. Note that the relative humidity is also equal to the mixing ratio of the substance A in
a given mixture to the mixing ratio the air would have if the substance were saturated. This is
different from the ratio of specific humidity to saturation specific humidity, or the ratio of molar
concentration to saturation molar concentration except when the mixing ratio is small.

It is intuitively plausible that the saturation vapor pressure should increase with increasing
temperature, as molecules move faster at higher temperatures, making it harder for them to stick
together to form condensate. The temperature dependence of saturation vapor pressure is expressed
by a remarkable thermodynamic relation known as the Clausius-Clapeyron equation. It is derived
from very general thermodynamic principles, via a detailed accounting of the work done in an
reversible expansion-contraction cycle crossing the condensation threshold, and requires neither
approximation nor detailed knowledge of the nature of the substance condensing. The relation
reads

dpsat

dT
=

1
T

L

ρ−1
v − ρ−1

c

(2.21)

where ρv is the density of the less condensed phase, ρc is the density of the more condensed phase,
and L is the latent heat associated with the transformation to the more condensed phase. For vapor
to liquid or solid transitions, ρc � ρv, enabling one to ignore the second term in the denominator
of Eqn 2.21. Further, upon substituting for density from the perfect gas law, one obtains the
simplified form

dpsat

dT
=

L

RAT 2
psat (2.22)

where RA is the gas constant for the substance which is condensing. If we make the approximation
that L is constant, then Eqn 2.21 can be integrated analytically, resulting in

psat(T ) = psat(To)e
− L

RA
( 1

T −
1

To
) (2.23)

where To is some reference temperature. This equation shows that saturation water vapor content
is very sensitive to temperature, decaying rapidly to zero as temperature is reduced and increasing
rapidly as temperature is increased. The rate at which the change occurs is determined by the
characteristic temperature L

RA
appearing in the exponential. For the transition of water vapor to

liquid, it has the value 5420K at temperatures near 300K. For CO2 gas to dry ice, it is 3138K,
and for methane gas to liquid methane it is 1031K. Equation 2.22 seems to imply that the psat

asymptotes to a constant value when T � L/RA. This is a spurious limit, though, since the
assumption of constant L invariably breaks down over such large temperature ranges. In fact,
L typically approaches zero at some critical temperature, where the distinction between the two
phases disappears. For water vapor, this critical point occurs at a temperature and pressure of
647.1K and 221bars. For carbon dioxide, the critical point occurs for the vapor-liquid transition,
at 304.2K and 73.825 bars. Critical points for other atmospheric gases are shown in Table 2.1. At
high pressures, the solid/liquid phase boundary does not typically terminate in a critical point,
but instead gives way to a bewildering variety of distinct solid phases distinguished primarily by
crystal structure.

Figure 2.4 summarizes the features of a typical phase diagram. Over ranges of a few bars
of pressure, the solid-liquid boundary can be considered nearly vertical. In fact the exact form of
the Clausius-Clapeyron relation (Eq. 2.21) tells us why the boundary is nearly vertical and how
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Figure 2.4: The general form of a phase diagram showing the regions of temperature-pressure
space where a substance exists in solid, liquid or gaseous forms. The triple point is marked with a
black circle while the critical point is marked with a grey circle. The solid-liquid phase boundary
for a ”normal” substance (whose solid phase is denser than its liquid phase) is shown as a solid
curve, whereas the phase boundary for water (ice less dense than liquid) is shown as a dashed
curve. The critical point pressure is typically several orders of magnitude above the triple point
pressure, while the critical point temperature is generally only a factor of two or three above the
triple point temperature. Therefore, the pressure axis on this diagram should be thought of as
logarithmic, while the temperature axis should be thought of as linear. This choice of axes also
reflects the fact that the pressure must typically be changed by an order of magnitude or more to
cause a significant change in the temperature of the solid/liquid phase transition.
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Figure 2.5: Saturation vapor pressure for water, based on the constant-L form of the Clausius-
Clapeyron relation. Curves are shown for vapor pressure based on the latent heat of vaporization,
and (below freezing) for latent heat of sublimation. The latter is the appropriate curve for sub-
freezing temperatures.

it deviates from verticality. Because the difference in density between solid and liquid is typically
quite small while the latent heat of fusion is comparatively large, Eq. 2.21 implies that the slope
dp/dT is very large (i.e. nearly vertical. The equation also tells us that in the ”normal” case where
ice is denser than liquid, the phase boundary tilts to the right, and so the freezing temperature
increases with pressure; at fixed pressure, one can cause a cold liquid to freeze by squeezing it. The
unusual lightness of water ice relative to the liquid phase implies that instead the phase boundary
tilts to the left; one can melt solid ice by squeezing it. Substituting the difference in density
between water ice and liquid water, and the latent heat of fusion, into Eq. 2.21, we estimate that
100bars of pressure decreases the freezing point temperature by about .74K. This is roughly the
pressure caused by about a kilometer of ice on Earth. The effect is small, but can nonetheless be
significant at the base of thick glaciers.

Below the triple point temperature, the favored transition is gas/solid,and so the appropriate
latent heat to use in the Clausius-Clapeyron relation is the latent heat of sublimation. Above
the triple point, the favored transition is gas/liquid, whence one should use the latent heat of
vaporization. The triple point (T, p) provides a convenient base for use with the simplified Clausius-
Clapeyron solution in Eqn. 2.23, or indeed for a numerical integration of the relation with variable
L. Results for water vapor are shown in Figure 2.5. These results were computed using the constant
L approximation for sublimation and vaporization, but in fact a plot of the empirical results on a
logarithmic plot of this type would not be distinguishable from the curves shown. The more exact
result does differ from the constant L idealization by a few percent, which can be important in
some applications. Be that as it may, the figure reveals the extreme sensitivity of vapor pressure
to temperature. The vapor pressure ranges from about .1 Pascals at 200K (the tropical tropause
temperature) to 35mb at a typical tropical surface temperature of 300K, rising further to 100mb
at 320K. Over this span of temperatures, water ranges from a trace gas to a major constituent; at
temperatures much above 320K, it rapidly becomes the dominant constituent of the atmosphere.
Note also that the distinction between the ice and liquid phase transitions has a marked effect
on the vapor pressure. Because the latent heat of sublimation is larger than the latent heat of
vaporization, the vapor pressure over ice is lower than the vapor pressure over liquid would be, at
subfreezing temperatures. At 200K, the ratio is nearly a factor of three.



90 CHAPTER 2. THERMODYNAMICS IN A NUTSHELL

Exercise 2.5.2 Let’s consider once more the case of the airliner cruising at an altitude of 300mb,
discussed in an earlier Exercise. Suppose that the ambient air at flight level has 100% relative
humidity. What is the relative humidity once the air has been brought into the cabin, compressed
to 1000mb, and chilled to a room temperature of 290K?

Once the saturation vapor pressure is known, one can compute the molar or mass mixing
ratios with respect to the background non-condensible gas, if any, just as for any other pair of gases.
The saturation vapor pressure is used in this calculation just like any other partial pressure. For
example, the molar mixing ratio is just psat/pa, if pa is the partial pressure of the noncondensible
background. Note that, while the saturation vapor pressure is independent of the pressure of the
gas with which the condensible substance is mixed, the saturation mixing ratio is not.

Exercise 2.5.3 What is the saturation molar mixing ratio of water vapor in air at the ground in
tropical conditions (1000mb and 300K)? What is the mass mixing ratio? What is the mass-specific
humidity? What is the molar mixing ratio (in ppm) of water vapor in air at the tropical tropopause
(100mb and 200K)?

2.6 The moist adiabat

When air is lifted, it cools by adiabatic expansion, and if it gets cold enough that one of the
components of the atmosphere begins to condense, latent heat is released. This makes the lifted
air parcel warmer than the dry adiabat would predict. The resulting temperature profile will be
referred to as the moist adiabat, regardless of whether the condensing substance is water vapor (as
on Earth) or something else (CO2 on Mars or methane on Titan). We now proceed to make this
quantitative.

The simplest case to consider is that of a single component atmosphere, which can attain
cold enough temperatures to reach saturation and condense. This case is relevant to present Mars,
which has an almost pure CO2 atmosphere that can condense in the cold Winter hemisphere and
at upper levels at any time of year. A pure CO2 atmosphere with a surface pressure on the
order of two or three bars is a commonly used model of the atmosphere of Early Mars, though
the true atmospheric composition in that instance is largely a matter of speculation. Another
important application of a single component condensible atmosphere is the pure steam (water
vapor) atmosphere, which occurs when a planet with an ocean gets warm enough that the mass of
water which evaporates into the atmosphere dominates the other gases that may be present. This
case figures prominenently in the runaway greenhouse effect that will be studied in Chapter 4.

For a single component atmosphere, the partial pressure of the condensible substance is
in fact the total atmospheric pressure. Therefore, at saturation, the pressure is related to the
temperature by the Clausius-Clapeyron relation. To find the saturated moist adiabat, we simply
solve for T in terms of psat in the Clausius-Clapeyron relation, and recall that p = psat because we
are assuming the atmosphere to be saturated – that is, any reduction in temperature or increase
in pressure leads to condensation. Using the simplified form of Clausius-Clapeyron given in Eqn
2.23, the saturated moist adiabat would be

T (p) =
To

1− RTo

L ln p
psat(To)

(2.24)

where R is the gas constant for the substance making up the atmosphere. Without loss of generality,
we may suppose that To is taken to be the surface temperature, so that psat(To) is the surface
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pressure ps. Since the logarithm is negative, the temperature decreases with altitude (recalling that
lower pressure corresponds to higher altitude). Further, the factor multiplying the logarithm is the
ratio of the surface temperature to the characteristic temperature L/R. Since the characteristic
temperature is large, the prefactor is small, and as a result the temperature of saturated adiabat
for a one-component atmosphere varies very little over a great range of pressures. For example, in
the case of the CO2 vapor-ice transition, an atmospheric surface pressure of 7mb (similar to that
of present Mars) would be in equilibrium with a surface dry-ice glacier at a temperature of 149K;
at .07mb – one one-hundredth of the surface pressure – the temperature on the saturated adiabat
would only fall to 122K.

Exercise 2.6.1 In the above example, what would the temperature aloft have been if there were
no condensation and the parcel were lifted along the dry adiabat?

Unless there is a reservoir of condensate at the surface to maintain saturation, it would
be rare for an atmosphere to be saturated all the way to the ground. Suppose now that a one-
component atmosphere has warm enough surface temperature that the surface pressure is lower
than the saturation vapor pressure computed at the surface temperature. In this case, when a
parcel is lifted by convection, its temperature will follow the dry or noncondensing adiabat, until the
temperature falls so much that the gas becomes saturated. The level at which this occurs is called
the lifted condensation level. Above the lifted condensation level, ascent causes condensation and
the parcel follows the saturated adiabat. Since the temperature curve along the saturated adiabat
falls with altitude so much less steeply than the dry adiabat, it is very easy for the two curves
to intersect provided the surface temperature is not exceedingly large. An example for present
Summer Martian conditions (specifically, like the warmest sounding in 2.2) is shown in Figure 2.6.
A comparison with the Martian profiles in Figure 2.2 indicates that something interesting is going
on in the Martian atmosphere. For the warm sounding, whose surface temperature is close to
255K, the entire atmosphere aloft is considerably warmer than the adiabat, and the temperature
nowhere comes close to the condensation threshold, though the very lowest portion of the observed
atmosphere, below the 200 Pa level, does follow the dry adiabat quite closely. Clearly, something
we haven’t taken into account is warming up the atmosphere. A likely candidate for the missing
piece is the absorption of solar energy by CO2 and dust.

Although results like Figure 2.6 show a region of weak temperature dependence aloft which
bears a superficial resemblance to the stratosphere seen in Earth soundings (and also at the top
of the Venus, Jupiter and Titan soundings), one should not jump to the conclusion that the
stratosphere is caused by condensation. This is not generally the case, and there are other reasons
for the upper atmospheric temperature structure, which will be taken up in the next few chapters.

As a final step up on the ladder of generality, let’s consider a mixture of a condensible
substance with a substance that doesn’t condense under the range of temperatures encountered
in the atmosphere under consideration. This might be a mixture of condensible methane on
Titan with non-condensible nitrogen, or condensible carbon dioxide on Early Mars with non-
condensible nitrogen, or water vapor on Earth with a non-condensible mixture of oxygen and
nitrogen. Whatever the substance, we distinguish the properties of the condensible substance with
the subscript ”c,” and those of the non-condensible substance by the subscript ”a” (for ”air”).
We now need to do the energy budget for a parcel of the mixture, assuming that it has been
cooled down enough for the condensible substance to reach saturation, so that any further cooling
results in formation of enough condensate (with concomitant release of latent heat) to keep the
system from becoming supersaturated. We further introduce the assumption that essentially all
of the condensate is immediately removed from the system, so that the heat storage in whatever
mass of condensate is left in suspension may be neglected. This is a reasonable approximation
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Figure 2.6: The adiabatic profile for a pure CO2 atmosphere with a surface pressure of 450 Pa
(4.5mb) and a surface temperature of 255K. The conditions are similar to those encountered on
the warmer portions of present-day Mars.



2.6. THE MOIST ADIABAT 93

for water or ice clouds on Earth, but even in that case the slight effect of the mass of retained
condensate on buoyancy can be significant in some circumstances. In other planetary atmospheres
the effect of retained condensate could be of greater importance. The temperature profile obtained
by assuming condensate is removed from the system is called a pseudoadiabat, because the process
is not truly reversible. One cannot return to the original saturated state, because the condensate
is lost. At the opposite extreme, if all condensate is retained, it can be re-evaporated when the
parcel is compressed, allowing for true reversibility.

Let the partial pressure, density, molecular weight, gas constant and specific heat of the
noncondensible substance be pa, ρa,Ma, Ra, and cpa, and similarly for the condensible substance.
Further, let L be the latent heat of the phase transition between the vapor and condensed phase of
the condensible substance, and let pc,sat(T ) be the saturation vapor pressure of this substance, as
determined by the Clausius-Clapeyron relation. The assumption of saturation amounts to saying
that pc = pc,sat(T ); if the parcel weren’t at saturation, there would be no condensation and we
could simply use the dry adiabat based on a noncondensing mixture of substance ”a” and ”c.”

Now consider a parcel consisting of a mass ma of noncondensible gas with an initial mass
mc of condensible gas. If the temperature is changed by an amount dT and the partial pressure of
noncondensible gas is changed by an amount dpa then the total heat budget of the parcel is

(ma + mc)δQ = macpadT − ma

ρa
dpa + mccpcdT − mc

ρc
dpc + Ldmc (2.25)

where dmc is the amount of mass lost to condensation. There is no term in this budget corre-
sponding to heat storage in the condensed phase, since it is assumed that all condensate disappears
from the parcel by precipitation. Technically, the temperature profile we will compute as a result
is the pseudoadiabat, rather than the adiabat, since the removal of condensate makes the process
irreversible. The usual way to change dpa would be by lifting, causing expansion and reduction of
pressure. Now, we divide by mcT , make use of the perfect gas law to substitute for ρa and ρc, and
make use of the fact that mc/ma = (Mc/Ma)(pc/pa), since mc/ma is just the mass mixing ratio,
denoted henceforth by rc. This yields

(1 + rc)
δQ

T
= cpa

dT

T
−Ra

dpa

pa
+ cpcrc

dT

T
− rcRc

dpc

pc
+

L

T
drc (2.26)

The first two terms can be recognized as the contribution of the two substances to the dry entropy of
the mixture, weighted according to relative abundance of each species. If there is no condensation,
the mixing ratio is conserved as the parcel is displaced to a new pressure, drc = 0, and the
expression reduces to the equivalent of Eqn. 2.9, leading to the dry adiabat for a mixture. At
this point, we introduce the saturation assumption, which actually consists of two parts: First,
we assume that the air parcel is initially saturated, so that before being displaced, pc = pc,sat(T )
and rc = rsat = εpc,sat(T )/pa, where ε is the ratio of molecular weights Mc/Ma and pc,sat(T ) is
determined by the Clausius-Clapeyron relation. Second, we assume that a displacement conserving
rc would cause supersaturation, so that condensation would occur and bring the partial pressure
pc back to the saturation vapor pressure corresponding to the new value of T . Usually, this
would occur as a result of ascent and cooling, since cooling strongly decreases the saturation vapor
pressure. In rare circumstances, it can be compression that leads to condensation. More typically,
though, the effect of compressional warming on saturation vapor pressure dominates the effect of
increasing partial pressure, so that subsidence of initially saturated air follows the dry adiabat.

Assuming that the displacement causes condensation, we may replace pc by pc,sat(T ) and
rc by rsat everywhere in Eqn. 2.26. Next, we use Clausius-Clapeyron to re-write dpc,sat, observing



94 CHAPTER 2. THERMODYNAMICS IN A NUTSHELL

that
dpc,sat

pc,sat
= d ln pc,sat =

d ln pc,sat

dT
dT (2.27)

and
drsat = εd

pc,sat

pa
= ε

pc

pa
d ln

pc

pa
= rsat · (d ln pc,sat − d ln pa) (2.28)

Upon substituting into Equation 2.26 and collecting terms in d lnT and d ln pa we find

(1 + rsat)
δQ

T
= (cpa + (cpc + (

L

RcT
− 1)

L

T
)rsat)d lnT − (1 +

L

RaT
rsat)Rad ln pa (2.29)

To obtain the adiabat, we set δQ = 0, which leads to the following diferential equation defining
lnT as a function of ln pa:

d lnT

d ln pa
=

Ra

cpa

1 + L
RaT rsat

1 + ( cpc

cpa
+ ( L

RcT − 1) L
cpaT )rsat

(2.30)

Note that this expression reduces to the dry adiabat, as it should, when rsat → 0.

Exercise 2.6.2 What would the dry adiabat be for a noncondensing mixture of the two gases?
Why doesn’t the expression reduce to the dry adiabat for the mixture as L → 0? (Hint: Think
about the way Clausius-Clapeyron has been used in deriving the moist adiabat).

An examination of the typical properties of gases indicates that the cpc/cpa is typically of
order unity, whereas L/(RcT ) is typically very large, so long as the temperature is not exceedingly
great. If one drops the smaller terms from the denominator of Eqn 2.30, one finds that the
temperature gradient along the moist adiabiabat is weaker than that along the dry adiabat provided
ε L

cpaT > 1, which is typically the case. It is expected that condensation should weaken the gradient,
since it adds heat to the system and warms the air to greater temperatures than it would have had
without condensation. This property can fail when the latent heat is weak or the noncondensible
specific heat is very large, whereon the heat added by condensation has little effect on temperature.
It is in this regime that there is also the possibility that condensation happens on descent rather
than ascent; it is a very uncommon regime.

Everything on the right hand side of Eqn 2.30 is either a thermodynamic constant, or can
be computed in terms of ln T and ln pa. Therefore, the equation defines a first order ordinary
differential equation which can be integrated (usually numerically) to obtain T as a function of pa.
Usually one wants the temperature as a function of total pressure, rather than partial pressure of
the noncondensible substance. This is no problem. Once T (pa) is known, the corresponding total
pressure at the same point is obtained by computing p = pa + pc,sat(T (pa)). To make a plot, or a
table, one treats the problem parametrically: computing both T and p as functions of pa. When
the condensible substance is dilute, then pc,sat << pa, and p ≈ pa, so Eqn 2.30 gives the desired
result directly.

Figure 2.7 shows a family of solutions to Eqn 2.30, for the case of water vapor in Earth
air. When the surface temperature is 250K, there is so little moisture in the atmosphere that the
profile looks like the dry adiabat right to the ground. As temperature is increased, a region of
weak gradients appears near the ground, representing the effect of latent heat on temperature. This
layer gets progressively deeper as temperature increases and the moisture content of the atmosphere
increases. When the surface temperature is 350K, so much moisture has entered the atmosphere
that the surface pressure has actually increased to over 1300mb. Moreover, the moisture-dominated
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Figure 2.7: The moist adiabat for saturated water vapor mixed with Earth air having a partial
pressure of 1 bar at the surface. Results are shown for various values of surface temperature,
ranging from 250K to 350K. The left panel shows the temperature profile, while the right shows
the profile of molar concentration of water vapor. A concentration value of .1 would mean that
one molecule in 10 of the atmosphere is water vapor.

region extends all the way to 10 Pa (.1mb) , and even at 100 Pa (1mb) the atmosphere is 10%
water by volume. Thus, for moderate surface temperatures, there is little water high up in the
atmosphere. When the surface temperature approaches or exceeds 350K, though, the ”cold trap”
is lost, and a great deal of water is found aloft, where it is exposed to the destructive ultraviolet
light of the sun and the possibility of thermal escape to space. In subsequent chapters, it will be
seen that this phenomenon plays a major role in the life cycle of planets, and probably accounts
for the present hot, dry state of Venus.

2.7 For Further Reading
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Chapter 3

Elementary models of radiation
balance

3.1 Energy balance and temperature

Our objective is to understand the factors governing the climate of a planet. Certainly, there is
more to climate than temperature, but equally certainly temperature is a major part of what is
meant by ”climate,” and greatly affects most of the other processes which come under that heading.

From the preceding chapter, we know that the temperature of a chunk of matter provides
a measure of its energy content. Suppose that the planet receives energy at a certain rate. If
uncompensated by loss, energy will accumulate and the temperature of some part of the planet
will increase without bound. Now suppose that the planet loses energy at a rate that increases
with temperature. Then, the temperature will increase until the rate of energy loss equals the rate
of gain. It is this principle of energy balance that determines a planet’s temperature. To quantify
the functional dependence of the two rates, one must know the nature of both energy loss and
energy gain.

The most familiar source of energy warming a planet is the absorption of light from the
planet’s star. This is the dominant mechanism for rocky planets like Venus, Earth and Mars. It is
also possible for energy to be supplied to the surface by heat transport from the deep interior, fed
by radioactive decay, tidal dissipation, or high temperature material left over from the formation of
the planet. Heat flux from the interior is a major player in the climates of some gas giant planets,
notably Jupiter and Saturn, because fluid motions can easily transport heat from the deep interior
to the outer envelope of the planet. The sluggish motion of molten rock, and even more sluggish
diffusion of heat through solid rock, prevent internal heating from being a significant part of the
energy balance of rocky planets. Early in the history of a planet, when collisions are more common,
the kinetic energy brought to the planet in the course of impacts with asteroids and planetesimals
can be a significant part of the planet’s energy budget.

There are many ways a planet can gain energy, but essentially only one way a planet can
lose energy. Since a planet sits in the hard vaccuum of outer space,and its atmosphere is rather
tightly bound by gravity, not much energy can be lost through heated matter streaming away from
the planet. The only significant energy loss occurs through emission of electromagnetic radiation,
most typically in the infrared spectrum. The quantification of this rate, and the way it is affected

97
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by a planet’s atmosphere, leads us to the subject of blackbody radiation.

3.2 Blackbody radiation

It is a matter of familiar experience that a sufficiently hot body emits light – hence terms like ”red
hot” or ”white hot.” Once it is recognized that light is just one form of electromagnetic radiation,
it becomes a natural inference that a body with any temperature at all should emit some form
of electromagnetic radiation, though not necessarily visible light. Thermodynamics provides the
proper tool for addressing this question.

Imagine a gas consisting of two kinds of molecules, labeled A and B. Suppose that the
two species interact strongly with each other, so that they come into thermodynamic equilibrium
and their statistical properties are characterized by the same temperature T . Now suppose that
the molecules A are ordinary matter, but that the ”molecules” B are particles of electromagnetic
radiation (”photons”) or, equivalently, electromagnetic waves. If they interact strongly with the
A molecules, whose energy distribution is characterized by their temperature T in accord with
classical thermodynamics, the energy distribution of the electromagnetic radiation should also
be characterized by the same temperature T . In particular, for any T there should be a unique
distribution of energy amongst the various frequencies of the waves. This spectrum can be observed
by examining the electromagnetic radiation leaving a body whose temperature is uniform. The
radiation in question is known as blackbody radiation because of the assumption that radiation
interacts strongly with the matter; any radiation impinging on the body will not travel far before
it is absorbed, and in this sense the body is called ”black” even though, like the Sun, it may be
emitting light. Nineteenth century physicists found it natural to seek a theoretical explanation
of the observed properties of blackbody radiation by applying well-established thermodynamical
principles to electromagnetic radiation as described by Maxwell’s classical equations. The attempt
to solve this seemingly innocuous problem led to the discovery of quantum theory, and a revolution
in the fundamental conception of reality.

Radiation is characterized by direction of propagation and frequency (and also polarization,
which will not concern us). For electromagnetic radiation, the frequency ν and wavelength λ are
related by the dispersion relation νλ = c, where c is a constant with the dimensions of veloc-
ity. Because visible light is a familiar form of electromagnetic radiation, c is usually called ”the
speed of light.” The wavenumber, defined by n = λ−1 = ν/c is often used in preference to fre-
quency or wavelength. Figure 3.1 gives the approximate regions of the electromagnetic spectrum
corresponding to common names such as ”Radio Waves” and so forth.

If a field of radiation consists of a mixture of different frequencies and directions, the mixture
is characterized by a spectrum, which is a function describing the proportions of each type of
radiation making up the blend. A spectrum is a density describing the amount of electromagnetic
energy contained in a unit volume of the space (3D position, frequency, direction) needed to
characterize the radiation, just as the mass density of a three dimensional object describes the
distribution of mass in three-dimensional space.

Before proceeding, we must pause and talk a bit about how the ”size” of collections of
directions are measured in three dimensions. For collections of directions on the plane, the measure
of the ”size” of the set of directions between two directions is just the angle between those directions.
The angle is typically measured in radians; the measure of the angle in radians is the length of the
arc of a unit circle whose opening angle is the angle we are measuring. The set of all angles in two
dimensions is then 2π radians for example. A collection of directions in three dimensional space
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Figure 3.1: The electromagnetic spectrum. The Median Emission Temperature is the temperature
of a blackbody for which half of the emitted power is below the given frequency (or equivalently,
wavelength or wavenumber). The Peak-ν Temperature is the temperature of a blackbody for
which the peak of the Planck density in frequency space is at the stated frequency. The Peak-
λ Temperature is the temperature of a blackbody for which the peak of the Planck density in
wavelength space is at the stated wavelength.
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is called a solid angle. A solid angle can sweep out an object more complicated than a simple arc,
but the ”size” or measure of the solid angle can be defined through a generalization of the radian,
known as the steradian. The measure in steradians of a solid angle made by a collection of rays
emanating from a point P is defined as the area of the patch of the unit sphere centered on P
which the rays intersect. For example, a set of directions tracing out a hemisphere has measure
2π steradians, while a set of directions tracing out the entire sphere (i.e. all possible directions)
has measure 4π steradians. If we choose some specific direction (e.g. the vertical) as a reference
direction, then a direction in three dimensional space can be specified in terms of two angles, θ and
φ, where theta is the angle between the reference direction and the direction we are specifying, and
φ is the angle along a circle centered on the reference direction. These angles define a spherical
polar coordinate system with the reference direction as axis; 0 ≥ θ ≤ π and 0 ≥ φ ≤ 2π. In terms
of the two direction angles, the differential of solid angle Ω is dΩ = sin θdθ dφ = −(d cos θ)(dφ).
Generally, when writing the expression for dΩ in the latter form we drop the minus sign and just
remember to flip the direction of integration to make the solid angle turn out positive. We recover
the area of the unit sphere by integrating dΩ over cos θ = −1 to cos θ = 1 and φ = 0 to φ = 2π.
A similar integration shows that the set of directions contained within a cone with vertex angle
∆θ measured relative to the altitude of the cone has measure 2π(1− cos ∆θ) steradians. A narrow
cone with ∆θ � 1 has measure π(∆θ)2 steradians.

We wish to characterize the energy in the vicinity of a point ~r in three dimensional space, with
frequency near ν and direction near that given by a unit vector n̂. The energy spectrum Σ(~r, ν, n̂)
at this point is defined such that the energy contained in a finite but small sized neighborhood
of the point (~r, ν, n̂) is ΣdV dνdΩ, where dV is a small volume of space, dν is the width of the
frequency band we wish to include, and dΩ measures the range of solid angles we wish to include.

Since electromagnetic waves in a vacuum move with constant speed c, the energy flux through
a flat patch perpendicular to n̂ with area dA is simply cΣdAdνdΩ, which defines the flux spectrum
cΣ. In mks units, the flux spectrum has units of (Watts/m2)/(Hz · steradian), where the Hertz
(Hz) is the unit of frequency, equal to one cycle per second. The flux spectrum defined in this way
is usually called the spectral irradiance; integrated over all frequencies, it is called the irradiance.

Exercise 3.2.1 The mks unit of energy is the Joule, J , which is 1 Newton ·meter/sec. A Watt (W )
is 1J/sec. A typical resting human in not-too-cold weather requires about 2000Calories/day. (A
Calorie is the amount of energy needed to increase the temperature of 1Kg of pure water by 1K.)
Convert this to a power consumption in W , using the fact that 1Calorie = 4184J .

On the average, the flux of Solar energy reaching the Earth’s surface is about 240W/m2.
Assuming that food plants can convert Solar energy to usable food calories with an efficiency of
1%, what is the maximum population the Earth could support? (The radius of the Earth is about
6371km)

The bold assumption introduced by Planck is that electromagnetic energy is exchanged
only in amounts that are multiples of discrete quanta, whose size depends on the frequency of
the radiation, in much the same sense that a penny is the quantum of US currency. Specifically,
the quantum of energy for electromagnetic radiation having frequency ν is ∆E = hν, where h
is now known as Planck’s constant. It is (so far as currently known) a constant of the universe,
which determines the granuarity of reality. h is an exceedingly small number (6.626 ·10−34Joule−
seconds), so quantization of energy is not directly manifest as discreteness in the energy changes of
everyday objects. A 1 watt blue nightlight (wavelength .48 microns, or frequency 6.24·1014Hz emits
2.4·1018 photons each second, so it is no surprise that the light appears to be a continuous stream. If
a bicycle were hooked to an electrical brake that dissipated energy by driving a blue light, emitting



3.2. BLACKBODY RADIATION 101

photons, the bike would indeed slow down in discontinuous increments, but the velocity increment,
assuming the bike and rider to have a mass of 80kg, would be only 10−10m/s; if one divides a
1m/s decrease of speed into 1010 equal parts, the deceleration will appear entirely continuous to
the rider. Nonetheless, the aggregate effect of microscopic graininess of energy transitions exert
a profound influence on the macroscopic properties of everyday objects. Blackbody radiation is a
prime example of this.

Once the quantum assumption was introduced, Planck was able to compute the irradiance
(flux spectrum) of blackbody radiation with temperature T using standard thermodynamic meth-
ods. The answer is

B(ν, T ) =
2hν3

c2

1
ehν/kT − 1

(3.1)

where k is the Boltzmann thermodynamic constant defined in Chapter 2. B(ν, T ) is known as the
Planck function. Note that the Planck function is independent of the direction of the radiation;
this is because blackbody radiation is isotropic, i.e. equally intense in all directions. In a typical
application of the Planck function, we wish to know the flux of energy exiting the surface of a
blackbody through a small nearly flat patch with area dA, over a frequency band of width dν.
Since energy exits through this patch at all angles, we must integrate over all directions. However,
energy exiting in a direction which makes an angle θ to the normal to the patch contributes a flux
(BdAdνdΩ) cos θ through the patch, since the component of flux parallel to the patch carries no
energy through it. Further, using the definition of a steradian, dΩ = 2πd cos θ for the set of all
rays making an angle θ relative to the normal to the patch. Integrating B cos θdΩ from θ = 0 to
θ = π/2, and using the fact that B is independent of direction, we then find that the flux through
the patch is πBdAdν. This is also the amount of electromagnetic energy in a frequency band of
width dν that would pass each second through a hoop enclosing area dA (from one chosen side to
the other), placed in the interior of an ideal blackbody; an equal amount passes through the hoop
in the opposite sense.

The way the angular distribution of the radiation is described by the Planck function can be
rather confusing, and requires a certain amount of practice to get used to. The following exercise
will test the readers’ comprehension of this matter.

Exercise 3.2.2 A radiation detector flies on an airplane a distance H above an infinite flat plain
with uniform temperature T . The detector is connected to a watt-meter which reports the total
radiant power captured by the detector. The detector is sensitive to rays coming in at angles ≤ δθ

relative to the direction in which the detector is pointed. The area of the aperture of the detector
is δA. The detector is sensitive to frequencies within a small range δν centered on ν0.

If the detector is pointed straight down, what is the power received by the detector? What
is the size of the ”footprint” on the plain to which the detector is sensitive? How much power is
emitted by this footprint in the detector’s frequency band? Why is this power different from the
power received by the detector?

How do your answers change if the detector is pointed at an angle of 45o relative to the
vertical, rather than straight down?

The Planck function depends on frequency only through the dimensionless variable u =
hν/(kT ). Recalling that each degree of freedom has energy 1

2kT in the average, we see that u is
half the ratio of the quantum of energy at frequency ν to the typical energy in a degree of freedom
of the matter with which the electromagnetic energy is in equilibrium. When u is large, the typical
energy in a degree of freedom cannot create even a single photon of frequency ν, and such photons
can be emitted only by those rare molecules with energy far above the mean. This is the essence
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of the way quantization affects the blackbody distribution – through inhibition of emission of
high-frequency photons. On the other hand, when u is small, the typical energy in a degree of
freedom can make many photons of frequency ν, and quantization imposes less of a constraint on
emission. The characteristic frequency kT/h defines the crossover between the classical world and
the quantum world. Much lower frequencies are little affected by quantization, whereas much higher
frequencies are strongly affected. At 300K, the crossover frequency is 6240GigaHz, corresponding
to a wavenumber of 20814m−1, or a wavelength of 48microns; this is in the far infrared range.

In terms of u, the Planck function can be rewritten

B(ν, T ) =
2k3T 3

h2c2

u3

eu − 1
(3.2)

In the classical limit, u � 1, and u3/(exp(u)−1) ≈ u2. Hence, B ≈ 2kTν2/c2, which is independent
of h. In a classical world, where h = 0, this form of the spectrum would be valid for all frequencies,
and the emission would increase quadratically with frequency without bound; a body with any
nonzero temperature would emit infrared at a greater rate than microwaves, visible light at a
greater rate than infrared, ultraviolet at a greater rate than visible, X-rays at a greater rate than
ultraviolet, and so forth. Bodies in equilibrium would cool to absolute zero almost instantaneously
through emission of a burst of gamma rays, cosmic rays and even higher frequency radiation. This
is clearly at odds with observations, not least the existence of the Universe. We are saved from
this catastrophe by the fact that h is nonzero, which limits the range of validity of the classical
form of B. At frequencies high enough to make u � 1, then u3/(exp(u)− 1) ≈ u3exp(−u) and the
spectrum decays somewhat more slowly than exponentially as frequency is increased. The peak of
B occurs at u ≈ 2.821, implying that the frequency of maximum emission is ν ≈ (2.821k/h)T ≈
58.78 · 109T . The peak of the frequency spectrum increases linearly with temperature. This
behavior, first deduced empirically long before it was explained by quantum theory, is known as
the Wien Displacement Law.

Because the emission decays only quadratically on the low frequency side of the peak, but
decays exponentially on the high frequency side, bodies emit appreciable energy at frequencies
much lower than the peak emission, but very little at frequencies much higher. For example, at
one tenth the peak frequency, a body emits at a rate of 4.8% of the maximum value. However,
at ten times the peak frequency, the body emits at a rate of only 8.9 · 10−9 of the peak emission.
The microwave emission from a portion of the Earth’s atmosphere with temperature 250K (having
peak emission in the infrared) is readily detectable by satellites, whereas the emission of visible
light is not.

Since B is a density, one cannot obtain the corresponding distribution in wavenumber or
wavelength space by simply substituting for ν in terms of wavenumber or wavelength in the formula
for B. One must also take into account the transformation of dν. For example, to get the flux
density in wavenumber space (call it Bn) we use B(ν, T )dν = B(n · c, T )d(n · c) = cB(n · c, T )dn,
whence Bn(n, T ) = cB(n · c, T ). Thus, transforming to wavenumber space changes the amplitude
but not the shape of the flux spectrum. The Planck density in wavenumber space is shown for
various temperatures in Figure 3.2. Because the transformation of the density from frequency
to wavenumber space only changes the labeling of the vertical axis of the graph, one can obtain
the wavenumber of maximum emission in terms of the frequency of maximum emission using
nmax = νmax/c. An important property of the Planck function, readily verified by a simple
calculation, is that dB/dT > 0 for all wavenumbers. This means that the Planck function for a
large temperature is strictly above one for a lower temperature, or equivalently, that increasing
temperature increases the emission at each individual wavenumber.
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Figure 3.2: The spectrum of blackbody radiation for the various temperatures indicated on the
curves. Upper Panel: The Planck density in wavenumber space. Lower Panel: The cumulative
emission as a function of wavenumber. Note that the density has been tranformed such that the
density times dn is the power per unit solid angle per unit area radiated in a wavenumber interval
of width dn.
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If one transforms to wavelength space, however,

B(ν, T )dν = B(c/λ, T )d(c/λ) = − c

λ2
B(c/λ, T )dλ =

2k5T 5

h4c3

u5

eu − 1
dλ = Bλdλ (3.3)

where u = kT/(hν) = kTλ/(hc), as before. Transforming to wavelength space changes the shape
of the flux spectrum. Bλ has its maximum at u ≈ 4.965, which is nearly twice as large as the value
for the wavenumber or frequency spectrum.

Since the location of the peak of the flux spectrum depends on the coordinate used to
measure position within the electromagnetic spectrum, this quantity has no intrinsic physical
meaning, apart from being a way to characterize the shape of the curve coming out of some
particular kind of measuring apparatus. A more meaningful quantity can be derived from the
cumulative flux spectrum, value at a given point in the spectrum is the same regardless of whether
we use wavenumber, wavelength, log λ or any other coordinate to describe the position within the
spectrum. The cumulative flux spectrum is defined as

Fcum(ν, T ) =
∫ ν

0

πB(ν′, T )dν′ =
∫ λ

∞
πBλ(λ′, T )dλ′ (3.4)

Note that in defining the cumulative emission we have included the factor π which results from
integrating over all angles of emission in a hemisphere. Fcum(ν, T ) thus gives the power emitted per
square meter for all frequencies less than ν, or equivalently, for all wavelengths greater than c/ν.
This function is shown for various temperatures in the lower panel of Fig. 3.2, where it is plotted
as a function of wavenumber. The value of ν for which Fcum(ν, T )reaches half the net emission
Fcum(∞, T ) provides a natural characterization of the spectrum. We will refer to this characteristic
frequency as the median emission frequency. The median emission wavelength and wavenumber is
defined analogously. Whether one uses frequency, wavelength or some other measure, the median
emission is attained at u ≈ 3.503. For any given coordinate used to describe the spectrum, the
(angle-integrated) Planck density in that coordinate is the derivative of the cumulative emission
with respect to the coordinate. Hence the peak in the Planck density just gives the point at
which the cumulative emission function has its maximum slope. This depends on the coordinate
used, unlike the point of median emission. Figure 3.1 shows the the portion of the spectrum
in which blackbodies with various temperatures dominantly radiate. For example, a body with a
temperature of around 4K radiates in the microwave region; this is the famous ”Cosmic Microwave
Background Radiation” left over from the Big Bang 1. A body with a temperature of 300K radiates
in the infrared, one with a temperature of a few thousand degrees radiates in the visible, and one
with a temperature of some tens of thousands of degrees would radiate in the ultraviolet.

Next, we evaluate Fcum(∞, T ), to obtain the total power F exiting from each unit area of
the surface of a blackbody:

F =
∫ ∞

0

πB(ν, T )dν =
∫ ∞

0

πB(u, T )
kT

h
du = [

2πk4

h3c2

∫ ∞

0

u3

eu − 1
du]T 4 = σT 4 (3.5)

where 2 σ = 2π5k4/(15c2h3) ≈ 5.67 · 10−8Wm−2K−4. The constant σ is known as the Stefan-
Boltzmann constant, and the law F = σT 4 is the Stefan-Boltzmann law. This law was originally

1What is remarkable about this observed cosmic radiation is not so much that it is in the microwave region,
but that it has a blackbody spectrum, which says much about the interaction of radiation with matter in the early
moments of the Universe.

2The definite integral
R∞
0 (u3/(eu− 1))du was determined by Euler, as a special case of his study of the behavior

of the Riemann zeta function at even integers. It is equal to 6ζ(4) = π4/15
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deduce from observations, and Boltzmann was able to derive the fourth-power scaling in temper-
ature using classical thermodynamic reasoning. However, classical physics yields an infinite value
for the constant σ. The formula for σ clearly reveals the importance of quantum effects in deter-
mining this constant, since σ diverges like 1/h3 if we try to pass to the classical limit by making
h approach zero.

An important property of an ideal blackbody is that the radiation leaving its surface depends
only on the temperature of the body. If a blackbody is interposed between an observer and some
other object, all properties of the object will be hidden from the observer, who will see only
blackbody radiation corresponding to the temperature of the blackbody. This remark allows us to
make use of blackbody theory to determine the emission from objects whose temperature varies
greatly from place to place, even though blackbody theory applies, strictly speaking, only to
extensive bodies with uniform temperature. For example, the temperature of the core of the Earth
is about 6000K, but we need not know this in order to determine the radiation emitted from the
Earth’s surface; the outermost few millimeters of rock, ice or water at the Earth’s surface contain
enough matter to act like a blackbody to a very good approximation. Hence, the radiation emitted
from the surface depends only on the temperature of this outer skin of the planet. Similarly,
the temperature of the core of the Sun is about 16, 000, 000K and even at a distance from the
center equal to 90% of the visible radius, the temperature is above 600, 000K. However, the Sun is
encased in a layer a few hundred kilometers thick which is sufficiently dense to act like a blackbody,
and which has a temperature of about 5780K. This layer is known as the photosphere, because
it is the source of most light exiting the Sun. Layers farther out from the center of the Sun can
be considerably hotter than the photosphere, but they have a minimal effect on solar radiation
because they are so tenuous. In Chapter 4 we will develop more precise methods for dealing with
tenuous objects, such as atmospheres, which peter out gradually without having a sharply defined
boundary.

An ideal blackbody would be opaque at all wavelengths, but it is a common situation that a
material acts as a blackbody only in a limited range of wavelengths. Consider the case of window
glass: It is transparent to visible light, but if you could see it in the infrared it would look as
opaque as stone. Because it interacts strongly with infrared light, window glass emits blackbody
radiation in the infrared range. At temperatures below a few hundred K, there is little blackbody
emission at wavelengths shorter than the infrared, so at such temperatures the net power per unit
area emitted by a pane of glass with temperature T is very nearly σT 4, even though it doesn’t act
like a blackbody in the visible range. Liquid water, and water ice, behave similarly. Crystalline
table salt, and carbon dioxide ice, are nearly transparent in the infrared as well as in the visible,
and in consequence emit radiation at a much lower rate than expected from the blackbody formula.
(They would make fine windows for creatures having infrared vision). There is, in fact, a deep
and important relation between absorption and emission of radiation, which will be discussed in
Section 3.5.

3.3 Radiation balance of planets

As a first step in our study of the temperature of planets, let’s consider the following idealized
case:

• The only source of energy heating the planet is absorption of light from the planet’s host
star.

• The albedo, or proportion of sunlight reflected, is spatially uniform.
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• The planet is spherical, and has a distinct solid or liquid surface which radiates like a perfect
blackbody.

• The planet’s temperature is uniform over its entire surface.

• The planet’s atmosphere is perfectly transparent to the electromagnetic energy emitted by
the surface.

The uniform-temperature assumption presumes that the planet has an atmosphere or ocean which
is so well stirred that it is able to rapidly mix heat from one place to another, smoothing out
the effects of geographical fluctuations in the energy balance. The Earth conforms fairly well
to this approximation. The equatorial annual mean temperature is only 4% above the global
mean temperature of 286K, while the North polar temperature is only 10% below the mean. The
most extreme deviation occurs on the high Antarctic plateau, where the annual mean South polar
temperature is 21% below the global mean. The surface temperature of Venus is even more uniform
than that of Earth. That of Mars, which in our era, has a thin atmosphere and no ocean, is less
uniform. Airless, rocky bodies like the Moon and Mercury do not conform at all well to the uniform
temperature approximation.

Light leaving the upper layers of the Sun and most other stars takes the form of blackbody
radiation. It is isotropic, and its flux and flux spectrum conform to the blackbody law corresponding
to the temperature of the photosphere, from which the light escapes. Once the light leaves the
surface of the star, however, it expands through space and does not interact significantly with
matter except where it is intercepted by a planet. Therefore, it is no longer blackbody radiation,
though it retains the blackbody spectrum. In the typical case of interest, the planet orbits its
star at a distance that is much greater than the radius of the star, and itself has a radius that
is considerably smaller than the star and is hence yet smaller than the orbital distance. In this
circumstance, all the rays of light which intersect the planet are very nearly parallel to the line
joining the center of the planet to the center of its star; the sunlight comes in as a nearly parallel
beam, rather than being isotropic, as would be the case for true blackbody radiation. The parallel-
beam approximation is equivalent to saying that, as seen from the planet, the Sun occupies only a
small portion of the sky, and as seen from the Sun the planet also occupies only a small portion of
the sky. Even for Mercury, with a mean orbital distance of 58, 000, 000km, the Sun (whose radius
is 695, 000km) occupies an angular width in the sky of only about 2 · 695, 000/58, 000, 000 radians,
or 1.4o.

The solar 3 flux impinging on the planet is also reduced, as compared to the solar flux
leaving the photosphere of the star. The total energy per unit frequency leaving the star is
4πr2

�(πB(ν, T�)), where r� is the radius of the star and T� is the temperature of its photo-
sphere. At a distance r from the star, the energy has spread uniformly over a sphere whose surface
area is 4πr2; hence at this distance, the energy flux per unit frequency is πBr2

�/r2, and the total
flux is σT 4

�r2
�/r2. The latter is the flux seen by a planet at orbital distance r, in the form of a

beam of parallel rays. It is known as the solar ”constant” , and will be denoted by L�, or simply
L where there is no risk of confusion with latent heat. The solar (or stellar) ”constant” depends
on a planet’s orbit, but the luminosity of the star is an intrinsic property of the star. The stel-
lar luminosity is the net power output of a star, and if the star’s emission can be represented as
blackbody radiation, the luminosity is given by I� = 4πr2

�T 4
�.

We are now equipped to compute the energy balance of the planet, subject to the preceding
simplifying assumptions. Let a be the planet’s radius. Since the cross-section area of the planet

3We’ll often use the adjective ”solar” to refer to properties of starlight in general, and not just that from our
own Sun.
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is πa2 and the solar radiation arrives in the form of a nearly parallel beam with flux L�, the
energy per unit time impinging on the planet’s surface is πa2L�; the rate of energy absorption is
(1−α)πa2L�, where α is the albedo. The planet loses energy by radiating from its entire surface,
which has area 4πa2. Hence the rate of energy loss is 4πa2σT 4, where T is the temperature of the
planet’s surface. In equilibrium the rate of energy loss and gain must be equal. After cancelling a
few terms, this yields

σT 4 =
1
4
(1− α)L� (3.6)

Note that this is independent of the radius of the planet. The factor 1
4 comes from the ratio of

the planet’s cross-sectional area to its surface area, and reflects the fact that the planet intercepts
only a disk of the incident solar beam, but radiates over its entire spherical surface. This equation
can be readily solved for T . If we substitute for L� in terms of the photospheric temperature, the
result is

T =
1√
2
(1− α)1/4

√
r�
r

T� (3.7)

Formula 3.7 shows that the blackbody temperature of a planet is much less than that of the
photosphere, so long as the orbital distance is large compared to the stellar radius. From the
displacement law, it follows that the planet loses energy through emission at a distinctly lower
wavenumber than that at which it receives energy from its star. This situation is illustrated in
Figure 3.3. For example, the energy received from our Sun has a median wavenumber of about
15000 cm−1, equivalent to a wavelength of about .7 microns. An isothermal planet at Mercury’s
orbit would radiate to space with a median emission wavenumber of 1100 cm−1, corresponding to
a wavelength of 9 microns. An isothermal planet at the orbit of Mars would radiate with a median
wavenumber of 550 cm−1, corresponding to a wavelength of 18 microns.

Exercise 3.3.1 A planet with zero albedo is in orbit around an exotic hot star having a photo-
spheric temperature of 100, 000K. The ratio of the planet’s orbit to the radius of the star is the
same as for Earth (about 215). What is the median emission wavenumber of the star? In what
part of the electromagnetic spectrum does this lie? What is the temperature of the planet? In
what part of the electromagnetic spectrum does the planet radiate? Do the same if the planet is
instead in orbit around a brown dwarf star with a photospheric temperature of 600K.

The separation between absorption and emission wavenumber will prove very important
when we bring a radiatively active atmosphere into the picture, since it allows the atmosphere to
have a different effect on incoming vs. outgoing radiation. Since the outgoing radiation has longer
wavelength than the incoming radiation, the flux of emitted outgoing radiation is often referred
to as outgoing longwave radiation, and denoted by OLR. For a non-isothermal planet, the OLR
is a function of position (e.g. latitude and longitude on an imaginary sphere tightly enclosing the
planet and its atmosphere). We will also use the term to refer to the outgoing flux averaged over
the surface of the sphere, even when the planet is not isothermal. As for the other major term in
the planet’s energy budget, we will refer to the electromagnetic energy received from the planet’s
star as the shortwave or solar energy. Our own Sun has its primary output in the visible part of
the spectrum, but it also emits significant amounts of energy in the ultraviolet and near-infrared,
both of which are shorter in wavelength than the OLR by which planets lose energy to space.

Formula 3.7 is plotted in Figure 3.4 for a hypothetical isothermal planet with zero albedo.
Because of the square-root dependence on orbital distance, the temperature varies only weakly
with distance, except very near the star. Neglecting albedo and atmospheric effects, Earth would
have a mean surface temperature of about 280K. Venus would be only 50K warmer than the Earth
and Mars only 53K colder. At the distant orbit of Jupiter, the blackbody equilibrium temperature
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Figure 3.3: The Planck density of radiation emitted by the Sun and selected planets in radiative
equilibrium with absorbed solar radiation (based on the observed shortwave albedo of the planets).
The Planck densities are transformed to a logarithmic spectral coordinate, and all are normalized
to unit total emission.

falls to 122K, but even at the vastly more distant orbit of Neptune the temperature is still as
high as 50K. The emission from all of these planets lies in the infrared range, though the colder
planets radiate in the deeper (lower wavenumber) infrared. An exception to the strong separation
between stellar and planetary temperature is provided by the ”roasters” – a recently discovered
class of extrasolar giant planets with r

r�
as low as 5. Such planets can have equilibrium blackbody

temperatures as much as a third that of the photosphere of the parent star. For these planets, the
distinction between the behavior of incoming and outgoing radiation is less sharp.

It is instructive to compare the ideal blackbody temperature with observed surface temper-
ature for the three Solar System bodies which have both a distinct surface and a thick enough
atmosphere to enforce a roughly uniform surface temperature: Venus, Earth and Saturn’s moon
Titan. For this comparison, we calculate the blackbody temperature using the observed planetary
albedos, instead of assuming a hypothetical zero albedo planet as in Fig. 3.4. Venus is covered by
thick, highly reflective clouds, which raise its albedo to .75. The corresponding isothermal black-
body temperature is only 232K (as compared to 330K in the zero albedo case). This is far less than
the observed surface temperature of 740K. Clearly, the atmosphere of Venus exerts a profound
warming effect on the surface. The warming arises from the influence of the atmosphere on the
infrared emission of the planet, which we have not yet taken into account. Earth’s albedo is on the
order of .3, leading to a blackbody temperature of 255K. The observed mean surface temperature
is about 285K. Earth’s atmosphere has a considerably weaker warming effect than that of Venus,
but it is nonetheless a very important warming, since it brings the planet from subfreezing temper-
atures where the oceans would almost certainly become ice-covered, to temperatures where liquid
water can exist over most of the planet. The albedo of Titan is .21, and using the solar constant
at Saturn’s orbit we find a black body temperature of 85K. The observed surface temperature is
about 95K, whence we conclude that the infrared effects of Titan’s atmosphere moderately warm
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Figure 3.4: The equilibrium blackbody temperature of an isothermal spherical zero-albedo planet,
as a function of distance from a Sun having a photospheric temperarature of 5800K. The orbital
distance is normalized by the radius of the Sun. Dots show the equilibrium blackbody temperature
of the Solar System planets, based on their actual observed albedos.

the surface.

The way energy balance determines surface temperature is illustrated graphically in Figure
3.5. One first determines the way in which the mean infrared emission per unit area depends on
the mean surface temperature Ts; for the isothermal blackbody calculation, this curve is simply
σT 4

s . The equilibrium temperature is determined by the point at which the OLR curve intersects
the curve giving the absorbed solar radiation (a horizontal line in the present calculation). In
some sense, the whole subject of climate comes down to an ever-more sophisticated heirarchy of
calculations of the curve OLR(Ts); our attention will soon turn to the task of determining how the
OLR curve is affected by an atmosphere. With increasing sophistication, we will also allow the
solar absorption to vary with Ts, owing to changing clouds, ice cover, vegetation cover, and other
characteristics.

We will now consider an idealized thought experiment which illustrates the essence of the way
an atmosphere affects OLR. Suppose that the atmosphere has a temperature profile T (p) which
decreases with altitude,according to the dry or moist adiabat. Let ps be the surface pressure,
and suppose that the ground is strongly thermally coupled to the atmosphere by turbulent heat
exchanges, so that the ground temperature cannot deviate much from that of the immediately
overlying air. Thus, Ts = T (ps). If the atmosphere were transparent to infrared, as is very nearly
the case for nitrogen or oxygen, the OLR would be σT 4

s . Now, let’s stir an additional gas into the
portion of the atmosphere between the ground and a pressure prad < ps, and suppose that the gas
is transparent to solar radiation, but interacts so strongly with infrared that it turns each portion
of the atmosphere it is mixed with into a perfect blackbody. A gas which is fairly transparent to
the incoming shortwave stellar radiation but which interacts strongly with the outgoing (generally
infrared) emitted radiation is called a greenhouse gas. Carbon dioxide, water vapor and methane
are some examples of greenhouse gases, and the molecular properties that make a substance a good
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Figure 3.5: Determination of a planet’s temperature by balancing absorbed solar energy against
emitted longwave radiation. The horizontal line gives the absorbed solar energy per unit surface
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Figure 3.6: Sketch illustrating how the greenhouse effect increases the surface temperature. In
equilibrium, the outgoing radiation must remain equal to the absorbed solar radiation, so Trad

stays constant. However, as more greenhouse gas is added to the atmosphere, prad is reduced, so
one must extrapolate temperature further along the adiabat to reach the surface.

greenhouse gas will be discussed in Chapter 4. If one imagines slicing the atmosphere into a number
layers so thin that they are essentially isothermal, then each layer with pressure greater than or
equal to prad radiates like an ideal blackbody at its own temperature, but it is only the topmost
of these layers that determines the radiation loss to space, since radiation from all the others is
absorbed before it reaches the topmost layer. Since the topmost layer has temperature T (prad)
and higher altitude layers are assumed transparent to infrared, the OLR is σT (prad)4, which is
less than σT 4

s to the extent that prad < ps. As shown in Figure 3.5, a greenhouse gas acts like
an insulating blanket, reducing the rate of energy loss to space at any given surface temperature.
The equilibrium surface temperature of a planet with a greenhouse gas in its atmosphere must
be greater than that of a planet without a greenhouse gas, in order to radiate away energy at a
sufficient rate to balance the absorbed solar radiation.

In the real universe, greenhouse gases are continuously distributed in the atmosphere, rather
than being confined to a single layer. Further, they increase the interaction of the atmosphere with
infrared, but rarely so much so as to turn some upper portion of the atmosphere into an ideal
blackbody. In reality,the infrared escaping to space is a blend of radiation emitted from a range
of atmospheric levels, with some admixture of radiation from the planet’s surface as well. The
concept of an effective radiating level nonetheless has merit for real greenhouse gases. It does not
represent a distinct physical layer of the atmosphere, but rather characterizes the mean depth
from which infrared photons escape to space. As more greenhouse gas is added to an atmosphere,
more of the lower parts of the atmosphere become opaque to infrared, preventing the escape of
infrared radiation from those regions. This increases the altitude of the effective radiating level (i.e.
decreases prad). From an observation of the actual OLR emitted by a planet, one can determine
an equivalent blackbody radiating temperature Trad from the expression σT 4

rad = OLR. This
temperature is the infrared equivalent of the Sun’s photospheric temperature; it is a kind of mean
temperature of the regions from which infrared photons escape, and prad represents a mean pressure
of these layers. For planets for which absorbed solar radiation is the only significant energy source,
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Figure 3.7: The Earth’s observed zonal-mean OLR for January, 1986. The observations were taken
by satellite instruments during the Earth Radiation Budget Experiment (ERBE), and are averaged
along latitude circles. The figure also shows the radiation that would be emitted to space by the
surface (σT 4

s ) if the atmosphere were transparent to infrared radiation.

Trad is equal to the ideal blackbody temperature given by Eq. 3.7. The arduous task of relating
the effective radiating level to specified concentrations of real greenhouse gases will be taken up in
Chapter 4.

Figure 3.7 illustrates the reduction of infrared emission caused by the Earth’s atmosphere.
At every latitude, the observed OLR is much less than it would be if the planet radiated to space at
its observed surface temperature. At the Equator the observed OLR is 238W/m2, corresponding to
a radiating temperature of 255K. This is much less than the observed surface temperature of 298K,
which would radiate at a rate of 446W/m2 if the atmosphere didn’t intervene. It is interesting that
the gap between observed OLR and the computed surface emission is less in the cold polar regions,
and especially small at the Winter pole. This happens partly because, at low temperatures, there is
simply less infrared emission for the atmosphere to trap. However, differences in the water content
of the atmosphere, and differences in the temperature profile, can also play a role. These effects
will be explored in Chapter 4.
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Gases are not the only atmospheric constituents which affect OLR. Clouds consist of parti-
cles of condensed substance small enough to stay suspended for a long time. They can profoundly
influence OLR. Gram for gram, condensed water interacts much more strongly with infrared than
does water vapor. In fact, a mere 20 grams of water in the form of liquid droplets of a typical
size is sufficient to turn a column of air 500m thick by one meter square into a very nearly ideal
blackbody. To a much greater extent than for greenhouse gases, a water cloud layer in an other-
wise infrared-transparent atmosphere really can be thought of as a discrete radiating layer. The
prevalance of clouds in the high, cold regions of the tropical atmosphere accounts for the dip in
OLR near the equator, seen in Figure 3.7. Clouds are unlike greenhouse gases, though, since they
also strongly reflect the incoming solar radiation. It’s the tendency of these two large effects to
partly cancel that makes the problem of the influence of clouds on climate so challenging. Not all
condensed substances absorb infrared as well as water does. Liquid methane (imporant on Titan)
and CO2 ice (important on present and early Mars) are comparatively poor infrared absorbers.
They affect OLR in a fundamentally different way, through reflection instead of absorption and
emission. This will be discussed in Chapter 5.

In a nutshell, then, here is how the greenhouse effect works: From the requirement of energy
balance, the absorbed solar radiation determines the effective blackbody radiating temperature
Trad. This is not the surface temperature; it is instead the temperature encountered at some
pressure level in the atmosphere prad, which characterizes the infrared opacity of the atmosphere,
specifically the typical altitude from which infrared photons escape to space. The pressure prad is
determined by the greenhouse gas concentration of the atmosphere. The surface temperature is
determined by starting at the fixed temperature Trad and extrapolating from prad to the surface
pressure ps using the atmosphere’s lapse rate, which is approximately governed by the appropriate
adiabat. Since temperature decreases with altitude over much of the depth of a typical atmosphere,
the surface temperature so obtained is typically greater than Trad, as illustrated in Figure 3.6.
Increasing the concentration of a greenhouse gas decreases prad, and therefore increases the surface
temperature because temperature is extrapolated from Trad over a greater pressure range. It
is very important to recognize that greenhouse warming relies on the decrease of atmospheric
temperature with height, which is generally due to the adiabatic profile established by convection.
The greenhouse effect works by allowing a planet to radiate at a temperature colder than the
surface, but for this to be possible, there must be some cold air aloft for the greenhouse gas to
work with.

For an atmosphere whose temperature profile is given by the dry adiabat, the surface tem-
perature is

Ts = (ps/prad)R/cpTrad. (3.8)

With this formula, the Earth’s present surface temperature can be explained by taking prad/ps =
.67, whence prad ≈ 670mb. Earth’s actual radiating pressure is somewhat lower than this estimate,
because the atmosperic temperature decays less strongly with height than the dry adiabat. The
high surface temperature of Venus can be accounted for by taking prad/ps = .0095, assuming
that the temperature profile is given by the noncondensing adiabat for a pure CO2 atmosphere.
Given Venus’ 93bar surface pressure, the radiating level is 880mb which, interestingly, is only
slightly less than Earth’s surface pressure. Earth radiates to space from regions quite close to its
surface, whereas Venus radiates only from a thin shell near the top of the atmosphere. Note that
from the observed Venusian temperature profile in Fig. 2.2, the radiating temperature (253K) is
encountered at p = 250mb rather than the higher pressure we estimated. As for the Earth, our
estimate of the precise value prad for Venus is off because the ideal-gas noncondensing adiabat is
not a precise model of the actual temperature profile. In the case of Venus, the problem most likely
comes from the ideal-gas assumption and neglect of variations in cp, rather than condensation.
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Observed OLR (W/m2) Absorbed Solar Flux (W/m2) Trad (actual) Trad (Solar only)
Jupiter 14.3 12.7 126K 110K
Saturn 4.6 3.8 95K 81K
Uranus .52 .93 55K 58K
Neptune .61 .38 57K 47K

Table 3.1: The energy balance of the gas giant planets, with inferred radiating temperature. The
solar-only value of Trad is the radiating temperature that would balance the observed absorbed
solar energy, in the absence of any internal heat source.

The concept of radiating level and radiating temperature also enables us to make sense
of the way energy balance constrains the climates of gas giants like Jupiter and Saturn, which
have no distinct surface. The essence of the calculation we have already done for rocky planets
is to use the top of atmosphere energy budget to determine the parameters of the adiabat, and
then extrapolate temperature to the surface along the adiabat. For a non-condensing adiabat, the
atmospheric profile compatible with energy balance is T (p) = Trad(p/prad)R/cp . This remains the
appropriate temperature profile for a (noncondensing) convecting outer layer of a gas giant, and
the only difference with the previous case is that, for a gas giant, there is no surface to act as
a natural lower boundary for the adiabatic region. At some depth, convection will give out and
the adiabat must be matched to some other temperature model in order to determine the base
of the convecting region, and to determine the temperature of deeper regions. There is no longer
any distinct surface to be warmed by the greenhouse effect, but the greenhouse gas concentration
of the atmosphere nonetheless affects T (p) through prad. For example, adding some additional
greenhouse gas to the convecting outer region of Jupiter’s atmosphere would decrease prad, and
therefore increase the temperature encountered at, say, the 1 bar pressure level.

The energy balance suffices to uniquely determine the temperature profile because the non-
condensing adiabat is a one-parameter family of temperature profiles. The saturated adiabat for a
mixture of condensing and noncondensing gases is also a one parameter family, defined by Eq. 2.30,
and can therefore be treated similarly. If the appropriate adiabat for the planet had more than
one free parameter, additional information beyond the energy budget would be needed to close the
problem. On the other hand, a single component condensing atmosphere such as described by Eq.
2.24 yields a temperature profile with no free parameters that can be adjusted so as to satisfy the
energy budget. The consequences of this quandary will be taken up as part of our discussion of
the runaway greenhouse phenonenon, in Chapter 4.

Using infrared telescopes on Earth and in space, one can directly measure the OLR of the
planets in our Solar System. In the case of the gas giants, the radiated energy is substantially
in excess of the absorbed solar radiation. Table 3.1 compares the observed OLR to the absorbed
solar flux for the gas giants. With the exception of Uranus, the gas giants appear to have a
substantial internal energy source, which raises the radiating temperature to values considerably
in excess of it would be if the planet were heated by solar absorption alone. Uranus is anomalous,
in that it actually appears to be emitting less energy than it receives from the sun. Uncertainties
in the observed OLR for Uranus would actually allow the emission to be in balance with solar
absorption, but would still appear to preclude any significant internal energy source. This may
indicate a profound difference in the internal dynamics of Uranus. On the other hand, the unusually
large tilt of Uranus’ rotation axis means that Uranus has an unusually strong seasonal variation
of solar heating, and it may be that the hemisphere that has been observed so far has not yet had
time to come into equilibrium, which would throw off the energy balance estimate.
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Because it is the home planet, Earth’s radiation budget has been very closely monitored
by satellites. Indirect inferences based on the rate of ocean heat uptake indicate that the top of
atmosphere radiation budget is currently out of balance, the Earth receiving about 1W/m2 more
from Solar absorption than it emits to space as infrared 4. This is opposite from the imbalance
that would be caused by an internal heating. It is a direct consequence of the rapid rise of CO2

and other greenhouse gases, caused by the bustling activities of Earth’s human inhabitants. The
rapid greenhouse gas increase has cut down the OLR, but because of the time required to warm
up the oceans and melt ice, the Earth’s temperature has not yet risen enough to restore the energy
balance.

Exercise 3.3.2 A typical well-fed human in a resting state consumes energy in the form of food at
a rate of 100W , essentially all of which is put back into the surroundings in the form of heat. An
astronaut is in a spherical escape pod of radius r, far beyond the orbit of Pluto, so that it receives
essentially no energy from sunlight. The air in the escape pod is isothermal. The skin of the escape
pod is a good conductor of heat, so that the surface temperature of the sphere is identical to the
interior temperature. The surface radiates like an ideal blackbody.

Find an expression for the temperature in terms of r, and evaluate it for a few reasonable
values. Is it better to have a bigger pod or a smaller pod? In designing such an escape pod, should
you include an additional source of heat if you want to keep the astronaut comfortable?

How would your answer change if the pod were cylindrical instead of spherical? If the pod
were cubical?

Bodies such as Mercury or the Moon represent the opposite extreme from the uniform-
temperature limit. Having no atmosphere or ocean to transport heat, and a rocky surface through
which heat is conducted exceedingly slowly, each bit of the planet is, to a good approximation,
thermally isolated from the rest. Moreover, the rocky surface takes very little time to reach its
equilibrium temperature, so the surface temperature at each point is very nearly in equilibrium
with the instantaneous absorbed solar radiation, with very little day-night or seasonal averaging.
In this case, averaging the energy budget over the planet’s surface gives a poor estimate of the
temperature, and it would be more accurate to compute the instantaneous equilibrium temperature
for each patch of the planet’s surface in isolation. For example, consider a point on the planet
where the Sun is directly overhead at some particular instant of time. At that time, the rays of
sunlight come in perpendicularly to a small patch of the ground, and the absorbed solar radiation
per unit area is simply (1 − α)L�; the energy balance determing the ground temperature is then
σT 4 = (1− α)L�, without the factor of 1

4 we had when the energy budget was averaged over the
entire surface of an isothermal planet. For Mercury, this yields a temperature of 622K, based on the
mean orbital distance and an albedo of .1. This is similar to the observed maximum temperature on
Mercury, which is about 700K (somewhat larger than the theoretical calculation because Mercury’s
highly elliptical orbit brings it considerably closer to the Sun than the mean orbital position). The
Moon, which is essentially in the same orbit as Earth and shares its Solar constant, has a predicted
maximum temperature of 384K, which is very close to the observed maximum. In contrast, the
maximum surface temperature on Earth stays well short of 384K, even at the hottest time of day
in the hottest places. The atmosphere of Mars in the present epoch is thin enough that this planet
behaves more like the no-atmosphere limit than the uniform-temperature limit. Based on a mean
albedo of .25,the local maximum temperature should be 297K, which is quite close to the observed
maximum temperature.

4At the time of writing, top-of-atmosphere satellite measurements are not sufficiently accurate to permit direct
observation of this imbalance
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More generally speaking, when doing energy balance calculations the temperature we have in
mind is the temperature averaged over an appropriate portion of the planet and over an appropriate
time interval, where what is ”appropriate” depends on the response time and the efficiency of the
heat transporting mechanisms of the planet under considerations. Correspondingly, the appropriate
incident solar flux to use is the incident solar flux per unit of radiating surface, averaged consistently
with temperature. We will denote this mean solar flux by the symbol S. For an isothermal planet
S = 1

4L�, while at the opposite extreme S = L� for the instantaneous response at the subsolar
point. In other circumstances it might be appropriate to average along a latitude circle, or over
a hemisphere. A more complete treatment of geographical, seasonal and diurnal temperature
variations will be given in Chapter 8.

Exercise 3.3.3 Consider a planet which is tide-locked to its Sun, so that it always shows the same
face to the Sun as it proceeds in its orbit (just as the Moon always shows the same face to the
Earth). Estimate the mean temperature of the day side of the planet, assuming the illuminated
face to be isothermal, but assuming that no heat leaks to the night side.

3.4 Ice-albedo feedback

Albedo is not a static quantity determined once and for all time when a planet forms. In large
measure, albedo is determined by processes in the atmosphere and at the surface which are highly
sensitive to the state of the climate. Clouds consist of suspended tiny particles of the liquid or
solid phase of some atmospheric constituent; such particles are very effective reflectors of visible
and ultraviolet light, almost regardless of what they are made of. Clouds almost entirely control
the albedos of Venus, Titan and all the gas giant planets, and also play a major role in Earth’s
albedo. In addition, the nature of a planet’s surface can evolve over time, and many of the
surface characteristics are strongly affected by the climate. Table 3.2 gives the albedo of some
common surface types encountered on Earth. The proportions of the Earth covered by sea-ice,
snow, glaciers, desert sands or vegetation of various types are determined by temperature and
precipitation patterns. As climate changes, the surface characteristics change too, and the resulting
albedo changes feed back on the state of the climate. It is not a ”chicken and egg” question of
whether climate causes albedo or albedo causes climate; rather it is a matter of finding a consistent
state compatible with the physics of the way climate affects albedo and the way albedo affects
climate. In this sense, albedo changes lead to a form of climate feedback. We will encounter many
other kinds of feedback loops in the climate system.

Among all the albedo feedbacks, that associated with the cover of the surface by highly
reflective snow or ice plays a distinguished role in thinking about the evolution of the Earth’s
climate. Let’s consider how albedo might vary with temperature for a planet entirely covered by
a water ocean – a reasonable approximation to Earth, which is 2

3 ocean. We will characterize the
climate by the global mean surface temperature Ts, but suppose that, like Earth, the temperature
is somewhat colder than Ts at the poles and somewhat warmer than Ts at the Equator. When Ts

is very large, say greater than some threshold temperature To, the temperature is above freezing
everywhere and there is no ice. In this temperature range, the planetary albedo reduces to the
relatively low value (call it αo) characteristic of sea water. At the other extreme, when Ts is very,
very low, the whole planet is below freezing, the ocean will become ice-covered everywhere, and the
albedo reduces to that of sea ice, which we shall call αi. We suppose that this occurs for Ts < Ti,
where Ti is the threshold temperature for a globally frozen ocean. In general Ti must be rather
lower than the freezing temperature of the ocean, since when the mean temperature Ts = Tfreeze

the equatorial portions of the planet will still be above freezing. Between Ti and To it is reasonable
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Surface type Albedo
Clean new H2O snow .85
Bare Sea ice .5
Clean H2O glacier ice .6
Deep Water .1
Sahara Desert sand .35
Martian sand .15
Basalt (any planet) .07
Granite .3
Limestone .36
Grassland .2
Deciduous forest .14
Conifer forest .09
Tundra .2

Table 3.2: Typical values of albedo for various surface types. These are only representative values.
Albedo can vary considerably as a function of detailed conditions. For example, the ocean albedo
depends on the angle of the solar radiation striking the surface (the value given in the table is for
near-normal incidence), and the albedo of bare sea ice depends on the density of air bubbles.

to interpolate the albedo by assuming the ice cover to decrease smoothly and monotonically from
100% to zero. The phenomena we will emphasize are not particularly sensitive to the detailed form
of the interpolation, but the quadratic interpolation

α(T ) =


αi for T ≤ Ti,

αo + (αi − αo)
(T−To)2

(Ti−To)2 for Ti < T < To

αo for T ≥ To

(3.9)

qualitatively reproduces the shape of the albedo curve which is found in detailed calculations. In
particular, the slope of albedo vs temperature is large when the temperature is low and the planet is
nearly ice-covered, because there is more area near the Equator, where ice melts first. Conversely,
the slope reduces to zero as the temperature threshold for an ice-free planet is approached, because
there is little area near the poles where the last ice survives; moreover, the poles receive relatively
little sunlight in the course of the year, so the albedo there contributes less to the global mean
than does the albedo at lower latitudes. Note that this description assumes an Earthlike planet,
which on average is warmest near the Equator. As will be discussed in Chapter 8, other orbital
configurations could lead to the poles being warmer, and this would call for a different shape of
albedo curve.

Ice albedo feedback of a similar sort could arise on a planet with land, through snow accu-
mulation and glacier formation on the continents. The albedo could have a similar temperature
dependence, in that glaciers are unlikely to survive where temperatures are very much above freez-
ing, but can accumulate readily near places that are below freezing – provided there is enough
precipitation. It is the latter requirement that makes land-based snow/ice albedo feedback much
more complicated than the oceanic case. Precipitation is determined by complex atmospheric
circulation patterns that are not solely determined by local temperature. A region with no precip-
itation will not form glaciers no matter how cold it is made. The present state of Mars provides a
good example: its small polar glaciers do not advance to the Equator, even though the daily aver-
age equatorial temperature is well below freezing. Still, for a planet like Earth with a widespread
ocean to act as a source for precipitation, it may be reasonable to assume that most continental
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areas will eventually become ice covered if they are located at sufficiently cold latitudes. In fair-
ness, we should point out that even the formation of sea ice is considerably more complex than we
have made it out to be, particularly since it is affected by the mixing of deep unfrozen water with
surface waters which are trying to freeze.

Earth is the only known planet that has an evident ice/snow albedo feedback, but it is
reasonable to inquire as to whether a planet without Earth’s water-dominated climate could behave
analogously. Snow is always ”white” more or less regardless of the substance it is made of, since
its reflectivity is due to the refractive index discontinuity between snow crystals and the ambient
gas or vacuum. Therefore, a snow-albedo feedback could operate with substances other than water
(e.g. nitrogen or methane). Titan presents an exotic possibility, in that its surface is bathed in
a rain of tarry hydrocarbon sludge, raising the speculative possibility of ”dark glacier” albedo
feedbacks. Sea ice forming on Earth’s ocean gets its high albedo from trapped air bubbles, which
act like snowflakes in reverse. The same could happen for ices of other substances, but sea-ice
albedo feedback is likely to require a water ocean. The reason is that water, alone among likely
planetary materials, floats when it freezes. Ice forming on, say, a carbon dioxide or methane ocean
would sink as soon as it formed, preventing it from having much effect on surface albedo.

Returning attention to an Earthlike waterworld, we write down the energy budget

(1− α(Ts))
L�
4

= OLR(Ts) (3.10)

This determines Ts as before, with the important difference that the Solar absorption on the left
hand side is now a function of Ts instead of being a constant. Analogously to Fig. 3.5, the
equilibrium surface temperature can be found by plotting the absorbed Solar radiation and the
OLR vs. Ts on the same graph. This is done in Fig. 3.8, for four different choices of L�. In this
plot, we have taken OLR = σT 4, which assumes no greenhouse effect 5. In contrast with the fixed-
albedo case, the ice-albedo feedback allows the climate system to have multiple equilibria: there
can be more than one climate compatible with a given Solar constant, and additional information
is required to determine which state the planet actually settles into. The nature of the equilibria
depends on L�. When L� is sufficiently small (as in the case L� = 1516W/m2 in Fig. 3.8) there
is only one solution, which is a very cold globally ice-covered Snowball state, marked Sn1 on the
graph. Note that the Solar constant that produces a unique Snowball state exceeds the present
Solar constant at Earth’s orbit. Thus, were it not for the greenhouse effect, Earth would be in such
a state, and would have been for its entire history. When L odot is sufficiently large (as in the case
L� = 2865W/m2 in Fig. 3.8) there is again a unique solution, which is a very hot globally ice-free
state, marked H on the graph. However, for a wide range of intermediate L�, there are three
solutions: a Snowball state (Sn2), a partially ice covered state with a relatively large ice sheet (e.g.
A), and a warmer state (e.g. B) which may have a small ice sheet or be ice free, depending on the
precise value of L�. In the intermediate range of Solar constant, the warmest state is suggestive of
the present or Pleistocene climate when there is a small ice-cap, and suggestive of Cretaceous-type
hothouse climates when it is ice-free. In either case, the frigid Snowball state is available as an
alternate possibility.

As the parameter L� is increased smoothly from low values, the temperature of the the
Snowball state increases smoothly but at some point an additional solution discontinuously comes
into being at a temperature far from the previous equilibrium, and splits into a pair as L� is
further increased. As L� is increased further, at some point, the intermediate temperature state
merges with the snowball state, and disappears. This sort of behavior, in which the behavior of

5Of course, this is an unrealistic assumption, since a waterworld would inevitably have at least water vapor – a
good greenhouse gas – in its atmosphere
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Figure 3.8: Graphical determination of the possible equilibrium states of a planet whose albedo
depends on temperature in accordance with Eq. 3.9. The OLR is computed assuming the atmo-
sphere has no greenhouse effect, and the albedo parameters are αo = .1, αi = .6, Ti = 260K and
To = 290K. The Solar constant for the various solar absorption curves is indicated in the legend.

a system changes discontinuously as some control parameter is continuously varied, is an example
of a bifurcation.

Finding the equilibria tells only part of the story. A system placed exactly at an equilbrium
point will stay there forever, but what if it is made a little warmer than the equilibrium? Will it
heat up yet more, perhaps aided by melting of ice, and ultimately wander far from the equilibrium?
Or will it cool down and move back toward the equilibrium? Similar questions apply if the state
is made initially slightly cooler than an equilibrium. This leads us to the question of stability. In
order to address stability, we must first write down an equation describing the time evolution of the
system. To this end, we suppose that the mean energy storage per unit area of the planet’s surface
can be written as a function of the mean temperature; let’s call this function E(Ts). Changes in
the energy storage could represent the energy required to heat up or cool down a layer of water of
some characteristic depth, and could also include the energy needed to melt ice, or released by the
freezing of sea water. For our purposes, all we need to know is that E is a monotonically increasing
function of Ts. The energy balance for a time-varying system can then be written

dE(Ts)
dt

=
dE

dTs

dTs

dt
= G(Ts) (3.11)

where G = 1
4 (1−α(Ts))L�−OLR(Ts). We can define the generalized heat capacity µ(T ) = dE/dT ,
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which is positive by assumption. Thus,

dTs

dt
=

G(Ts)
µ(Ts)

(3.12)

By definition, G = 0 at an equilibrium point Teq. Suppose that the slope of G is well-defined
near Teq – in formal mathematical language, we say that G is continuously differentiable at Teq,
meaning that the derivative of G exists and is a continous function for Ts in some neighborhood
of Teq. Then, if dG/dTs < 0 at Ts, it will also be negative for some finite distance to the right
and left of Ts. This is the case for points a and c in the net flux curve sketched in Fig. 3.9. If
the temperature is made a little warmer than Teq in this case, G(Ts) and hence dTs

dt will become
negative and the solution will move back toward the equilibrium. If the temperature is made a
little colder than Teq, G(Ts) and hence dTs

dt will become positive, and the solution will again move
back toward the equilibrium. In contrast, if dG/dTs > 0 near the equilibrium, as for point c in
the sketch, a temperature placed near the equilibrium moves away from it, rather than towards it.
Such equilibria are unstable. If the slope happens to be exactly zero at an equilibrium, one must
look to higher derivatives to determine stability. These are ”rare” cases, which will be encountered
only for very special settings of the parameters. If the d2G/dT 2 is non zero at the equilibrium, the
curve takes the form of a parabola tangent to the axis at the equilibrium. If the parabola opens
upwards, then the equilibrium is stable to displacements to the left of the equilibrium, but unstable
to displacements to the right. If the parabola opens downwards, the equilibrium is unstable to
displacements to the left but stable to displacements to the right. Similar reasoning applies to
the case in which the first non-vanishing derivative is higher order, but such cases are hardly ever
encountered.

Exercise 3.4.1 Draw a sketch illustrating the behavior near marginal equilibria with d2G/dT 2 > 0

and d2G/dT 2 < 0. Do the same for equilibria with d2G/dT 2 = 0, having d3G/dT 3 > 0 and d3G/dT 3 <

0

It is rare that one can completely characterize the behavior of a nonlinear system, but one
dimensional problems of the sort we are dealing with are exceptional. In the situation depicted
in Fig. 3.9, G is positive and dT/dt is positive throughout the interval between b and c. Hence,
a temperature placed anywhere in this interval will eventually approach the solution c arbitrarily
closely – it will be attracted to that stable solution. Similarly, if T is initially between a and b,
the solution will be attracted to the stable equilibrium a. The unstable equilibrium b forms the
boundary between the basins of attraction of a and c. No matter where we start the system within
the interval between a and c (and somewhat beyond, depending on the shape of the curve further
out), it will wind up approaching one of the two stable equilibrium states. In mathematical terms,
we are able to characterize the global behavior of this system, as opposed to just the local behavior
near equilibria.

At an equilibrium point, the curve of solar absorption crosses the OLR curve, and the
stability criterion is equivalent to stating that the equilibrium is stable if the slope of the solar
curve is less than that of the OLR curve where the two curves intersect. Using this criterion, we see
that the intermediate-temperature large ice-sheet states, labeled A and A′ in Fig. 3.8, are unstable.
If the temperature is made a little bit warmer then the equilibrium the climate will continue to
warm until it settles into the warm state (B or B′) which has a small or nonexistent ice sheet. If
the temperature is made a little bit colder than the equilibrium, the system will collapse into the
snowball state (Sn2 or Sn3). The unstable state thus defines the boundary separating the basin
of attraction of the warm state from that of the snowball state.
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Figure 3.9: Sketch illustrating stable vs. unstable equilibrium temperatures.

Moreover, if the net flux G(T ) is continous and has a continuous derivative (i.e. if the curve
has no ”kinks” in it), then the sequence of consecutive equilibria always alternates between stable
and unstable states. For the purpose of this theorem, the rare marginal states with dG/dT = 0
should be considered ”wildcards” that can substitute for either a stable or unstable state. The
basic geometrical idea leading to this property is more or less evident from Figure 3.9, but a more
formalized argument runs as follows: Let Ta and Tb be equilibria, so that G(Ta) = G(Tb) = 0.
Suppose that the first of these is stable, so dG/dT < 0 at Ta, and also that the two solutions
are consecutive, so that G(T ) does not vanish for any T between Ta and Tb. Now if dG/dT < 0
at Tb, then it follows that G > 0 just to the left of Tb. The slope near Ta similarly implies that
G < 0 just to the right of Ta. Since G is continuous, it would follow that G(T ) = 0 somewhere
between Ta and Tb. This would contradict our assumption that the two solutions are consecutive.
In consequence, dG/dT ≥ 0 at Tb. Thus, the state Tb is either stable or marginally stable, which
proves our result. The proof goes through similarly if Ta is unstable. Note that we didn’t actually
need to make use of the condition that dG/dT be continuous everywhere: it’s enough that it be
continuous near the equilibria, so we can actually tolerate a few kinks in the curve.

A consequence of this result is that, if the shape of G(T ) is controlled continously by some
parameter like L�, then new solutions are born in the form of a single marginal state which, upon
further change of L� splits into a stable/unstable or unstable/stable pair. The first member of the
pair will be unstable if there is a pre-existing stable solution immediately on the cold side of the
new one, as is the case for the Snowball states Sn in Fig. 3.8. The first member will be stable if
there is a pre-existing unstable state on cold side, or a pre-existing stable state on the warm side
(e.g. the state H in Fig. 3.8). What we have just encountered is a very small taste of the very
large and powerful subject of bifurcation theory.

3.4.1 Faint Young Sun, Snowball Earth and Hysteresis

We we now have enough basic theoretical equipment to take a first quantitative look at the Faint
Young Sun problem. To allow for the greenhouse effect of the Earth’s atmosphere, we take prad =
670mb, which gives the correct surface temperature with the observed current albedo α = .3.
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How much colder does the Earth get if we ratchet the Solar constant down to 960W/m2, as it
was 4.7 billion years ago when the Earth was new? As a first estimate, we can compute the
new temperature from Eq. 3.8 holding prad and the albedo fixed at their present values. This
yields 261K. This is substantially colder than the present Earth. The fixed albedo assumption
is unrealistic,however, since the albedo would increase for a colder and more ice-covered Earth,
leading to a substantially colder temperature than we have estimated. In addition, the strength of
the atmospheric greenhouse effect could have been different for the Early Earth, owing to changes
in the composition of the atmosphere.

An attempt at incorporating the ice-albedo feedback can be made by using the energy
balance Eq. 3.10 with the albedo parameterization given by Eq. 3.9. For this calculation, we
choose constants in the albedo formula that give a somewhat more realistic Earthlike climate than
those used in Figure 3.8. Specifically, we set αo = .28 to allow for the albedo of clouds and land, and
To = 295 to allow a slightly bigger polar ice sheet. The position of the equilibria can be determined
by drawing a graph like Fig. 3.8, or by applying a root-finding algorithm like Newton’s method to
Eq. 3.10. The resulting equilibria are shown as a function of L� in Figure 3.10, with prad held fixed
at 670mb. Some techniques for generating diagrams of this type are developed in Problem ??. For
the modern Solar constant, and prad = 670mb, the system has a stable equilibrium at Ts = 286K,
close to the observed modern surface temperature, and is partially ice covered. However, the system
has a second stable equilibrium, which is a globally ice-covered Snowball state having Ts = 249K.
Even today, the Earth would stay in a Snowball state if it were somehow put there. The two stable
equilibria are separated by an unstable equilibrium at Ts = 270K, which defines the boundary
between the set of initial conditions that go to the ”modern” type state, and the set that go to a
Snowball state. The attractor boundary for the modern open-ocean state is comfortably far from
the present temperature, so it would not be easy to succumb to a Snowball.

Now we turn down the Solar constant, and re-do the calculation. For L� = 960W/m2, there
is only a single equilibrium point if we keep prad = 670mb. This is a stable Snowball state with
Ts = 228K. Thus, if the Early Earth had the same atmospheric composition as today,leading to
a greenhouse effect no stronger than the present one, the Earth would have inevitably been in a
Snowball state. The open ocean state only comes into being when L� is increased to 1330W/m2,
which was not attained until the relatively recent past. This contradicts the abundant geological
evidence for prevalent open water throughout several billion years of Earth’s history. Even worse,
if the Earth were initially in a stable snowball state four billion years ago, it would stay in that
state until L� increases to 1640W/m2, at which point the stable snowball state would disappear
and the Earth would deglaciate. Since this far exceeds the present Solar constant, the Earth would
be globally glaciated today. This even more obviously contradicts the data.

The currently favored resolution to the paradox of the Faint Young Sun is the supposition
that the atmospheric composition of the early Earth must have resulted in a stronger greenhouse
effect than the modern atmosphere produces. The prime candidate gases for mediating this change
are CO2 and CH4. The radiative basis of the idea will be elaborated further in Chapter 4, and
some ideas about why the atmosphere might have adjusted over time so as to maintain an equable
climate despite the brightening Sun are introduced in Chapter 9. Fig. 3.11 shows how the equilibria
depend on prad, with L� fixed at 960W/m2. Whichever greenhouse gas is the Earth’s savior, if
it is present in sufficient quantities to reduce prad to 500mb or less, then a warm state with an
open ocean exists (the upper branch in Fig. 3.11). However, for 420mb < prad < 500mb a stable
snowball state also exists, meaning that the climate that is actually selected depends on earlier
history. If the planet had already fallen into a Snowball state for some reason, the early Earth
would stay in a Snowball unless the greenhouse gases build up sufficiently to reduce prad below
420mb at some point.



3.4. ICE-ALBEDO FEEDBACK 123

220

240

260

280

300

320

1000 1200 1400 1600 1800 2000

Su
rf

ac
e 

T
em

pe
ra

tu
re

 

Solar Constant (W/m
2
)

p
rad

 = 670mb

Figure 3.10: Hysteresis diagram obtained by varying L� with prad/ps fixed at .67. Arrows indicate
path followed by the system as L� is first increased, then decreased. The unstable solution branch
is indicated by a dashed curve.
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Figures 3.10 and 3.11 illustrate an important phenomenon known as hysteresis: the state
in which a system finds itself depends not just on the value of some parameter of the system, but
the history of variation of that parameter. This is possible only for systems that have multiple
stable states. For example, in 3.10 suppose we start with L� = 1000W/m2, where the system
is inevitably in a Snowball state with T = 230K. Let’s now gradually increase L�. When L�
reaches 1500W/m2 the system is still in a Snowball state, having T = 254K, since we have been
following a stable solution branch the whole way. However, when L� reaches 1640W/m2, the
Snowball solution disappears, and the system makes a sudden transition from a Snowball state
with T = 260K to the only available stable solution, which is an ice-free state having T = 301K.
As L� increases further to 2000W/m2, we follow the warm, ice-free state and the temperature rises
to 316K. Now suppose we begin to gradually dim the Sun, perhaps by making the Solar system
pass through a galactic dust cloud. Now, we follow the upper, stable branch as L� decreases,
so that when we find ourselves once more at L� = 1500W/m2 the temperature is 294K and the
system is in a warm, ice-free state rather than in the Snowball state we enjoyed the last time we
were there. As L� is decreased further, the warm branch disappears at L� = 1330W/m2 and the
system drops suddenly from a temperature of 277K into a Snowball state with a temperature of
246K, whereafter the Snowball branch is again followed as L� is reduced further. The trajectory
of the system as L� is increased then decreased back to its original value takes the form of an open
loop, depicted in Fig. 3.10.

The thought experiment of varying L� in a hysteresis loop is rather fanciful, but many
atmospheric processes could act to either increase or decrease the greenhouse effect over time. For
the very young Earth, with L� = 960W/m2, the planet falls into a Snowball when prad exceeds
500mb, and thereafter would not deglaciate until prad is reduced to 420mb or less (see Fig. 3.11).
The boundaries of the hysteresis loop, which are the critical thresholds for entering and leaving
the Snowball, depend on the solar constant. For the modern solar constant, the hysteresis loop
operates between prad = 690mb and prad = 570mb. It takes less greenhouse effect to keep out of
the Snowball now than it did when the Sun was fainter, but the threshold for initiating a Snowball
in modern conditions is disconcertingly close to the value of prad which reproduces the present
climate.

The fact that the freeze-thaw cycle can exhibit hysteresis as atmospheric composition changes
is at the heart of the Snowball Earth phenomenon. An initially warm state can fall into a globally
glaciated Snowball if the atmospheric composition changes in such a way as to sufficiently weaken
the greenhouse effect. Once the threshold is reached, the planet can fall into a Snowball relatively
quickly – in a matter of a thousand years or less – since sea ice can form quickly. However, to
deglaciate the Snowball, the greenhouse effect must be increased far beyond the threshold value
at which the planet originally entered the Snowball state. Atmospheric composition must change
drastically in order to achieve such a great increase, and this typically takes many millions of
years. When deglaciation finally occurs, it leaves the atmosphere in a hyper-warm state, which
only gradually returns to normal as the atmospheric composition evolves in such a way as to re-
duce the greenhouse effect. As discussed in Chapter 1, there are two periods in Earth’s past when
geological evidence suggests that one or more Snowball freeze-thaw cycles may have occurred. The
first is in the Paleoproterozoic, around 2 billion years ago. At this time, L� ≈ 1170W/m2, and
the thresholds for initiating and deglaciating a Snowball are prad = 600mb and prad = 500mb in
our simple model. For the Neoproterozoic, about 700 million years ago, L� ≈ 1290W/m2 and the
thresholds are at prad = 650mb and prad = 540mb.

The boundaries of the hysteresis loop shift as the Solar constant increases, but there is
nothing obvious in the numbers to suggest why a Snowball state should have occurred in the
Paleoproterozoic and Neoproterozoic but not at other times. Hysteresis associated with ice-albedo
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feedback has been a feature of the Earth’s climate system throughout the entire history of the
planet. Hysteresis will remain a possibility until the Solar constant increases sufficiently to render
the Snowball state impossible even in the absence of any greenhouse effect (i.e. with prad =
1000mb). Could a Snowball episode happen again in the future, or is that peril safely behind
us? These issues require an understanding of the processes governing the evolution of Earth’s
atmosphere, a subject that will be taken up in Chapter 9.

Exercise 3.4.2 Assuming an ice albedo of .6, how high does L� have to become to eliminate the
possibility of a snowball state? Will this happen within the next five billion years? What if you
assume there is enough greenhouse gas in the atmosphere to make prad/ps = .5?

Note: The evolution of the Solar constant over time is approximately L�(t) = L�p · (.7 +

(t/22.975) + (t/14.563)2), where t is the age of the Sun in billions of years (t = 4.6 being the current
age) and L�p is the present Solar constant. This fit is reasonably good for the first 10 billion years
of Solar evolution.

The ”cold start” problem is a habitability crisis that applies to waterworlds in general. If
a planet falls into a Snowball state early in its history, it could take billions of years to get out if
one needs to wait for the Sun to brighten. The time to get out of a Snowball could be shortened
if greenhouse gases build up in the atmosphere, reducing prad. How much greenhouse gas must
build up to deglaciate a snowball? How long would that take? What could cause greenhouse gases
to accumulate on a Snowball planet? These important questions will be taken up in subsequent
chapters.

Another general lesson to be drawn from the preceding discussion is that the state with a
stable, small icecap is very fragile, in the sense that the planetary conditions must be tuned rather
precisely for the state to exist at all. For example, with the present Solar constant, the stable small
icecap solution first appears when prad falls below 690mb. However, the icecap shrinks to zero as
prad is reduced somewhat more, to 615mb. Hence, a moderate strengthening in the greenhouse
effect would, according to the simple energy balance model, eliminate the polar ice entirely and
throw the Earth into an ice-free Cretaceous hothouse state. The transition to an ice-free state of
this sort is continous in the parameter being varied; unlike the collapse into a snowball state or the
recovery from a snowball, it does not result from a bifurcation. In light of its fragility, it is a little
surprising that the Earth’s present small-icecap state has persisted for the past two million years,
and that similar states have occurred at several other times in the past half billion years. Does the
simple energy-balance model exaggerate the fragility of the stable small-icecap state? Does some
additional feedback process adjust the greenhouse effect so as to favor such a state while resisting
the peril of the Snowball? These are largely unresolved questions. Attacks on the first question
require comprehensive dynamical models of the general circulation, which we will not encounter
in the present volume. We will take up, though not resolve, the second question in Chapter 9.
It is worth noting that small-icecap states like those of the past two million years appear to be
relatively uncommon in the most recent half billion years of Earth’s history, for which data is good
enough to render a judgement about ice cover. The typical state appears to be more like the warm
relatively ice-free states of the Cretaceous, and perhaps this reflects the fragility of the small-icecap
state.

The simple models used above are too crude to produce very precise hysteresis boundaries.
Among the many important effects left out of the story are water vapor radiative feedbacks,
cloud feedbacks, the factors governing albedo of sea ice, ocean heat transports and variations in
atmospheric heat transport. The phenomena uncovered in this exposition are general, however and
can be revisited across a heirarchy of models. Indeed, the re-examination of this subject provides
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an unending source of amusement and enlightenment to climate scientists.

3.4.2 Climate sensitivity, radiative forcing and feedback

The simple model we have been studying affords us the opportunity to introduce the concepts
of radiative forcing, sensitivity coefficient and feedback factor. These diagnostics can be applied
across the whole spectrum of climate models, from the simplest to the most comprehensive.

Suppose that the mean surface temperature depends on some parameter Λ, and we wish
to know how sensitive T is to changes in that parameter. For example, this parameter might be
the Solar constant, or the radiating pressure. It could be some other parameter controlling the
strength of the greenhouse effect, such as CO2 concentration. Near a given Λ, the sensitivity is
characterized by dT/dΛ.

Let G be the net top-of-atmosphere flux, such as used in Eq. 3.11. To allow for the fact
that the terms making up the net flux depend on the parameter Λ, we write G = G(T,Λ). If we
take the derivative of the the energy balance requirement G = 0 with respect to Λ, we find

0 =
∂G

∂T

dT

dΛ
+

∂G

∂Λ
(3.13)

so that
dT

dΛ
= −

∂G
∂Λ
∂G
∂T

(3.14)

The numerator in this expression is a measure of the radiative forcing associated with changes in Λ.
Specifically, changing Λ by an amount δΛ will perturb the top-of-atmosphere radiative budget by
∂G
∂Λ δΛ, requiring that the temperature change so as to bring the energy budget back into balance.
For example, if Λ is the Solar constant L, then ∂G

∂Λ = 1
4 (1−α). If Λ is the radiating pressure prad,

then ∂G
∂Λ = −∂OLR

∂prad
. Since OLR goes down as prad is reduced, a reduction in prad yields a positive

radiative forcing. This is a warming influence.

Radiative forcing is often quoted in terms of the change in flux caused by a standard change
in the parameter, in place of the slope ∂G

∂Λ itself. For example, the radiative forcing due to CO2

is typically described by the change in flux caused by doubling CO2 from its pre-industrial value,
with temperature and everything else is held fixed. This is practically the same thing as ∂G

∂Λ if we
take Λ = log2 pCO2, where pCO2 is the partial pressure of CO2. Similarly, the climate sensitivity
is often described in terms of the temperature change caused by the standard forcing change,
rather than the slope dT

dΛ . For example, the notation ∆T2x would refer to the amount by which
temperature changes when CO2 is doubled.

The denominator of Eq. 3.14 determines how much the equilibrium temperature changes in
response to a given radiative forcing. For any given magnitude of the forcing, the response will be
greater if the denominator is smaller. Thus, the denominator measures the climate sensitivity. An
analysis of ice-albedo feedback illustrates how a feedback process affects the climate sensitivity. If
we assume that albedo is a function of temperature, as in Eq. 3.9, then

∂G

∂T
= −1

4
L

∂α

∂T
− ∂OLR

∂T
(3.15)

With this expression, Eq. 3.14 can be rewritten

dT

dΛ
= − 1

1 + Φ
[

∂G
∂Λ

∂OLR
∂T

] (3.16)
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where

Φ =
1
4
L

∂α
∂T

∂OLR
∂T

(3.17)

In writing this equation we primarily have ice-albedo feedback in mind, but the equation is valid
for arbitrary α(T ) so it could as well describe a variety of other processes. The factor in square
brackets in Eqn. 3.16 is the sensitivity the system would have if the response were unmodified by
the change of albedo with temperature. The first factor determines how the sensitivity is increased
or decreased by the feedback of temperature on albedo. If −1 < Φ < 0 then the feedback increases
the sensitivity – the same radiative forcing produces a bigger temperature change than it would in
the absence of the feedback. When Φ = − 1

2 , for example, the response to the forcing is twice what
it would have been in the absence of the feedback. The sensitivity becomes infinite as Φ → −1,
and for −2 < Φ < −1 the feedback is so strong that it actually reverses the sign of the response as
well as increasing its magnitude. On the other hand, if Φ > 0, the feedback reduces the sensitivity.
In this case it is a stabilizing feedback. The larger Φ gets, the more the response is reduced. For
example, when Φ = 1 the response is half what it would have been in the absence of feedback. Note
that the feedback term is the same regardless of whether the radiative forcing is due to changing
L, prad or anything else.

As an example, let’s compute the feedback parameter Φ for the albedo-temperature relation
given by Eq. 3.9, under the conditions shown in Fig. 3.10. Consider in particular the upper
solution branch, which represents a stable partially ice-covered climate like that of the present
Earth. At the point L = 1400W/m2, T = 288K on this branch, we find Φ = −.333. Thus, at this
point the ice-albedo feedback increases the sensitivity of the climate by a factor of about 1.5. At the
bifurcation point L ≈ 1330W/m2, T ≈ 277K, Φ → −1 and the sensitivity becomes infinite. This
divergence merely reflects the fact that the temperature curve is vertical at the bifurcation point.
Near such points, the temperature change is no longer linear in radiative forcing. It can easily be
shown that the temperature varies as the square root of radiative forcing near a bifurcation point,
as suggested by the plot.

The ice-albedo feedback increases the climate sensitivity, but other feedbacks could be sta-
bilizing. In fact Eq. 3.17 is valid whatever the form of α(T ), and shows that the albedo feedback
becomes a stabilizing influence if albedo increases with temperature. This could conceivably hap-
pen as a result of vegetation feedback, or perhaps dissipation of low clouds. The somewhat fanciful
Daisyworld example in the Workbook section at the end of this chapter provides an example of
such a stabilizing feedback.

The definition of the feedback parameter can be generalized as follows. Suppose that the
energy balance function G depends not only on the control parameter Λ, but also on some other
parameter R which varies systematically with temperature. In the previous example, R(T ) is the
temperature-dependent albedo. We write G = G(T,R(T ),Λ). Following the same line of reasoning
as we did for the analysis of ice-albedo feedback, we find

Φ =
∂G

∂R

∂R

∂T

∂G

∂T
(3.18)

For example, if R represents the concentration of water vapor on Earth, or of methane on Titan,
and if R varies as a function of temperature, then the feedback would influence G through the
OLR. Writing OLR = OLR(T,R(T ),Λ), then the feedback parameter is

Φ =
∂OLR

∂R
∂R
∂T

∂OLR
∂T

(3.19)
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assuming the albedo to be independent of temperature in this case. Now, since OLR increases with
T and OLR decreases with R, the feedback will be destabilizing (Φ < 0) if R increases with T .
(One might expect R to increase with T because Clausius-Clapeyron implies that the saturation
vapor pressure increases sharply with T , making it harder to remove water vapor by condensation,
all other things being equal). Note that in this case the water vapor feedback does not lead to a
runaway, with more water leading to higher temperatures leading to more water in a never-ending
cycle; the system still attains an equilibrium, though the sensitivity of the equilibrium temperature
to changes in a control parameter is increased.

3.5 Partially absorbing atmospheres

The assumption underpinning the blackbody radiation formula is that radiation interacts so
strongly with matter that it achieves thermodynamic equilibrium at the same temperature as
the matter. It stands to reason, then, that if a box of gas contains too few molecules to offer
much opportunity to intercept a photon, the emission will deviate from the blackbody law. Weak
interaction with radiation can also arise from aspects of the structure of a material which inhibit
interaction, such as the crystal structure of table salt or carbon dioxide ice. In either event, the
deviation of emission from the Planck distribution is characterized by the emissivity. Suppose that
I(ν, n̂) is the observed flux of radiation at frequency ν emerging from a body in the direction n̂.
Then the emissivity e(ν, n̂) is defined by the expression

I(ν, n̂) = e(ν, n̂)B(ν, T ) (3.20)

where T is the temperature of the collection of matter we are observing. Note that in assigning a
temperature T to the body, we are assuming that the matter itself is in a state of thermodynamic
equilibrium. The emissivity may also be a function of temperature and pressure. We can also
define a mean emissivity over frequencies, and all rays emerging from a body. The mean emissivity
is

ē =

∫
ν,Ω

e(ν, n̂)B(ν, T ) cos θdνdΩ

σT 4
(3.21)

where θ is the angle of the ray to the normal to the body’s surface and the angular integration is
taken over the hemisphere of rays leaving the surface of the body. With this definition, the net flux
emerging from any patch of the body’s surface is F = ēσT 4. Even if e does not depend explicitly
on temperature, ē will be temperature dependent if e is frequency dependent, since the relative
weighting of different frequencies, determined by B(ν, T ) changes with temperature.

A blackbody has unit emissivity at all frequencies and directions. A blackbody also has unit
absorptivity, which is just a restatement of the condition that blackbodies interact strongly with
the radiation field. For a non-black body, we can define the absorptivity a(ν, n̂) by shining light at
a given frequency and direction at the body and measuring how much is reflected and how much
comes out the other side. Specifically, suppose that we shine a beam of electromagnetic energy
with direction n̂, frequency ν and flux Finc at the test object. Then we measure the additional
energy flux coming out of the object once this beam is turned on. This outgoing flux may come out
in many different directions, because of scattering of the incident beam; in exotic cases, even the
frequency could differ from the incident radiation. Let T and R be the transmitted and reflected
energy flux, integrated over all angles and frequencies. Then, the absorptivity is defined by taking
the ratio of the flux of energy left behind in the body to the incident flux. Thus,

a(ν, n̂) =
Finc − (T + R)

Finc
(3.22)
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The Planck function is unambigously the natural choice of a weighting function for defining the
mean emissivity ē for an object with temperature T . There is no such unique choice for defining
the mean absorptivity over all frequencies and directions. The appropriate weighting function is
determined by the frequency and directional spectrum of the incident radiation which requires
a detailed knowledge of its source. If the incident radiation is a blackbody with temperature
Tsource then ā should be defined with a formula like Eq. 3.20, using B(ν, Tsource) as the weighting
function. Note that the weighting function is defined by the temperature of the source rather than
by the temperature of the the object doing the absorbing. As was the case for mean emissivity,
the temperature dependence of the weighting function implies that ā will vary with Tsource even if
a = a(ν) and is not explicitly dependent on temperature.

Absorptivity and emissivity might appear to be independent characteristics of an object,
but observations and theoretical arguments reveal an intimate relation between the two. This
relation, expressed by Kirchhoff’s Law of Radiation is a profound property of the interaction of
radiation with matter that lies at the heart of all radiative transfer theory. Kirchoff’s Law states
that the emissivity of a substance at any given frequency equals the absorptivity measured at the
same frequency. It was first inferred experimentally. The hard-working spectroscopists of the late
nineteenth centuries employed their new techniques to measure the emission spectrum I(ν, n̂, T )
and absorptivity a(ν, n̂, T ) of a wide variety of objects at various temperatures. Kirchhoff found
that, with the exception of a few phosphorescent materials whose emission was not linked to
temperature, all the experimental data collapsed onto a single universal curve, independent of the
material, once the observed emission was normalized by the observed absorptivity. In other words,
virtually all materials fit the relation I(ν, n̂, T )/a(ν, n̂, T ) = f(ν, T ) with the same function f . If
we take the limit of a perfect absorber – a perfectly ”black” body – then a = 1 and we find that f
is in fact what we have been calling the Planck function B(ν, T ). In fact, it was this extrapolation
to a perfect absorber that originally led to the formulation of the notion of blackbody radiation.
Since f = B and I = eB, we recover the statement of Kirchoff’s law in the form e/a = 1.

The thought experiment sketched in Fig. 3.12 allows us to deduce Kirchhoff’s law for the
mean absorptivity and emissivity from the requirements of the Second Law of Thermodynamics.
We consider two infinite slabs of a blackbody material with temperature To, separated by a gap.
Into the gap, we introduce a slab of partially transparent material with mean absorptivity ā(T1)
and mean emissivity ē(T1), where T1 is the temperature of the test material. Note that this system
is energetically closed. We next require that the radiative transfer between the blackbody material
and the test object cause the system to evolve toward an isothermal state. In other words we
are postulating that radiative heat transfers satisfy the Second Law. A necessary condition for
radiative transfer to force the system to evolve towards an isothermal state is that the isothermal
state To = T1 be an equilibrium state of the system; if it weren’t an initially isothermal state would
spontaneously generate temperature inhomogeneities. Energy balance requires that 2ā(To)σT 4

o =
2ē(T1)σT 4

1 . Kirchhoff’s law then follows immediately by setting To = T1 in the energy balance,
which then implies ā(To) = ē(To). Note that the mean absorptivity in this statement is defined
using the Planck function at the common temperature of the two materials as the weighting
function.

A modification of the preceding argument allows us to show that in fact the emissivity and
absorptivity should be equal at each individual frequency, and not just in the mean. To simplify
the argument, we will assume that e and a are independent of direction. The thought experiment
we employ is similar to that used to justify Kirchhoff’s Law in the mean, except that this time we
interpose frequency-selective mirrors between the test object and the blackbody material, as shown
in Fig. 3.13. The mirrors allow the test object to exchange radiant energy with the blackbody
only in a narrow frequency band ∆ν around a specified frequency ν. The energy budget for the
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Figure 3.12: Sketch illustrating thought experiment for demonstating Kirchoff’s Law in the mean
over all wavenumbers. In the annotations on the sketch, a = ā(To) and e = ē(T1).

test object now reads 2e(ν)B(ν, T1)∆ν = 2a(ν)B(ν, To)∆ν. Setting T1 = To so that the isothermal
state is an equilibrium, we find that e(ν) = a(ν).

The preceding argument, presented in the form originally given by Kirchhoff, is the justifi-
cation commonly given for Kirchhoff’s Law. It is ultimately unsatisfying, as it applies equilibrium
thermodynamic reasoning to a system in which the radiation field is manifestly out of equilibrium
with matter; in the frequency-dependent form, it invokes the existence of mirrors with hypothet-
ical material properties; worse, it takes as its starting point that radiative heat transfer will act
like other heat transfers to equalize temperature, whereas we really ought to be able to demon-
strate such a property from first principles of the interaction of radiation with molecules. The
great mathematician David Hilbert, was among many who recognized these difficulties; in 1912
he presented a formal justification that eliminated the involvement of hypothetical ideal selective
mirrors. The physical content of Hilbert’s proof is that one doesn’t need an ideal mirror, if one
requires that a sufficient variety of materials with different absorbing and emitting properties will
all come into an isothermal state at equilibrium. Hilbert’s deriviation nonetheless relied on an
assumption that radiation would come into equilibrium with matter at each individual wavelength
considered separately. While Kirchoff did the trick with mirrors, Hilbert, in essence, did the trick
with axioms instead, leaving the microscopic justification of Kirchoff’s Law equally obscure. It is
in fact quite difficult to provide a precise and concise statement of the circumstances in which a
material will comply with Kirchoff’s Law. Violations are quite commonplace in nature and in engi-
neered materials, since it is quite possible for a material to store absorbed electromagnetic energy
and emit it later, perhaps at a quite different frequency. A few examples that come to mind are
phosphorescent (”glow in the dark”) materials, fluorescence (e.g. paints that glow when exposed to
ultraviolet, or ”black” light), frequency doubling materials (used in making green laser pointers),
and lasers themselves. In Nature, such phenomena involve insignificant amounts of energy, and are
of no known importance in determining the energy balance of planets. We will content ourselves
here with the statement that all known liquid and solid planetary materials, as well as the gases
making up atmospheres, conform very well to Kirchoff’s Law, except perhaps in the most tenuous
outer reaches of atmospheres where the gas itself is not in thermodynamic equilibrium.
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Figure 3.13: Sketch illustrating thought experiment for demonstrating Kirchoff’s Law for a narrow
band of radiation near frequency ν0. The thin dashed lines represent ideal frequency-selective
mirrors, which pass frequencies close to ν0, but reflect all others without loss.

When applying Kirchhoff’s law in the mean, careful attention must be paid to the weighting
function used to define the mean absorptivity. For example, based on the incident Solar spectrum,
the Earth has a mean albedo of about .3, and hence a mean absorptivity of .7. Does this imply that
the mean emissivity of the Earth must be .7 as well? In fact, no such implication can be drawn,
because Kirchhoff’s Law only requires that the mean emissivity and absorptivity are the same
when averaged over identical frequency weighting functions. Most of the Earth’s thermal emission
is in the infrared, not the visible. Kirchhoff’s law indeed requires that the visible wavelength
emissivity is .7, but the net thermal emission of the Earth in this band is tiny compared to the
infrared, and contributes almost nothing to the Earth’s net emission. Specifically, the Planck
function implies that, at 255K the emission in visible wavelengths is smaller than the emission in
infrared wavelengths by a factor of about 10−19. Thus, if the infrared emission from some region
were 100W/m2, the visible emission would be only 10−17W/m2. Using ∆E = hν to estimate the
energy of a photon of visible light, we find that this amounts to an emission of only 50 visible
light photons each second, from each square meter of radiating surface. This tiny outgoing thermal
emission of visible light should not be confused with the much larger outgoing flux of reflected solar
radiation.

It is a corollary of Kirchhoff’s law that e ≤ 1. If the emissivity were greater than unity, then
by Kirchhoff’s Law, the absorptivity would also have to be greater than unity. In consequence,
the amount of energy absorbed by the body per unit time would be greater than the amount
delivered to it by the incident radiation. By conservation of energy, that would imply the existence
of an internal energy source. However, any internal energy source would ultimately be exhausted,
violating the assumption that the system is in a state of equilibrium which can be maintained
indefinitely.
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3.6 Optically thin atmospheres: The skin temperature

Since the density of an atmosphere always approaches zero with height, in accordance with the
hydrostatic law, one can always define an outer layer of the atmosphere that has so few molecules
in it that it will have low infrared emissivity. We will call this the skin layer. What is the
temperature of this layer? Suppose for the moment that it is transparent to solar radiation, and
that atmospheric motions do not transport any heat into the layer; thus, it is heated only by
infrared upwelling from below. Because the emissivity of the skin layer is assumed small, little of
the upwelling infrared will be absorbed, and so the upwelling infrared is very nearly the same as
the OLR. The energy balance is between absorption and emission of infrared. Since the skin layer
radiates from both its top and bottom, the energy balance reads

2eirσT 4
skin = eirOLR. (3.23)

Hence,

Tskin =
1
2

1
4
(
OLR

σ
)

1
4 =

1
2

1
4
Trad (3.24)

where Trad is defined as before. Thus, the skin temperature is colder than the blackbody radiating
temperature by a factor of 2−

1
4 . The skin temperature is the natural temperature the outer regions

of an atmosphere would have in the absence of in situ heating by solar absorption or other means.
Note that the skin layer does not need any interior heat transfer mechanism to keep it isothermal,
since the argument we have applied to determine Tskin applies equally well to any sublayer of the
skin layer.

A layer that has low emissivity, and hence low absorptivity, in some given wavelength band
is referred to as being optically thin in this band. A layer could well be optically thick in the
infrared, but optically thin in the visible, which is in fact the case for strong greenhouse gases.

Now let’s suppose that the entire atmosphere is optically thin, right down to the ground,
and compute the pure radiative equilibrium in this system in the absence of heat transfer by
convection. We’ll also assume that the atmosphere is completely transparent to the incident Solar
radiation. Let S be the incident Solar flux per unit surface area, appropriate to the problem under
consideration (e.g. 1

4L� for the global mean or L� for temperature at the subsolar point on a
planet like modern Mars). Since the atmosphere has low emissivity, the heating of the ground by
absorption of downwelling infrared emission coming from the atmosphere can be neglected to lowest
order. Since the ground is heated only by absorbed Solar radiation, its temperature is determined
by σT 4

s = (1− α)S, just as if there were no atmosphere at all. In other words, prad = ps because
the atmosphere is optically thin, so that the atmosphere does not affect the surface temperature
no matter what its temperature structure turns out to be. Next we determine the atmospheric
temperature. The whole atmosphere has small but nonzero emissivity so that the skin layer in this
case extends right to the ground. The atmosphere is then isothermal, and its temperature Ta is
just the skin temperature 2−1/4Ts.

The surface is thus considerably warmer than the air with which it is in immediate contact.
There would be nothing unstable about this situation if radiative transfer were truly the only heat
transfer mechanism coupling the atmosphere to the surface. In reality, the air molecules in contact
with the surface will acquire the temperature of the surface by heat conduction, and turbulent air
currents will carry the warmed air away from the surface, forming a heated, buoyant layer of air.
This will trigger convection, mixing a deep layer of the atmosphere within which the temperature
profile will follow the adiabat. The layer will grow in depth until the temperature at the top
of the mixed layer matches the skin temperature, eliminating the instability. This situation is
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Temperature
ps

0

TsTskin

ptrop

Figure 3.14: The unstable pure radiative equilibrium for an optically thin atmosphere (solid line)
and the result of adjustment to the adiabat by convection (dashed line). The adjustment of the
temperature profile leaves the surface temperature unchanged in this case, because the atmosphere
is optically thin and has essentially no effect on the OLR.

depicted in Figure 3.14. The isothermal, stably stratified region above the mixed region is the
stratosphere in this atmosphere, and the lower, adiabatic region is the troposphere; the boundary
between the two is the tropopause. We have just formulated a theory of tropopause height for
optically thin atmospheres. To make it quantitative, we need only require that the adiabat starting
at the surface temperature match to the skin temperature at the tropopause. Let ps be the surface
pressure and ptrop be the tropopause pressure. For the dry adiabat, the requirement is then
Ts(ptrop/ps)R/cp = Tskin. Since Ts = 21/4Tskin, the result is

ptrop

ps
= 2−

cp
4R (3.25)

Note that the tropopause pressure is affected by R/cp, but is independent of the insolation S.

The stratosphere in the preceding calculation differs from the observed stratosphere of Earth
in that it is isothermal rather than warming with altitude. The factor we have left out is that real
stratospheres often contain constituents that absorb solar radiation. To rectify this shortcoming,
let’s consider the effect of solar absorption on the temperature of the skin layer. Let eir be
the infrared emissivity, which is still assumed small, and asw be the shortwave (mostly visible)
absorptivity, which will also be assumed small. Note that Kirchhoff’s Law does not require eir =
asw, as the emissivity and absorptivity are at different wavelengths. The solar absorption of incident
radiation is aswS. We’ll assume that the portion of the solar spectrum which is absorbed by the
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atmosphere is absorbed so strongly that it is completely absorbed before reaching the ground. This
is in fact the typical situation for solar near-infrared and ultraviolet. In this case, one need not
take into account absorption of the upwelling solar radiation reflected from the surface.

Exercise 3.6.1 Show that if the atmosphere absorbs uniformly throughout the solar spectrum,
then the total absorption in the skin layer is (1 + (1− asw)αg)aswS, where αg is the solar albedo of
the ground. Show that the planetary albedo – i.e. the albedo observed at the top of the atmosphere
– is (1− asw)2αg.

The energy balance for the skin layer now reads

eirσT 4 = eirOLR + aswS (3.26)

Hence,

T = Tskin(1 +
asw

eir

S

OLR
)

1
4 (3.27)

where Tskin is the skin temperature in the absence of Solar absorption. The formula shows that
Solar absorption always increases the temperature of the skin layer. The temperature increases as
the ratio of shortwave absorption to infrared emissivity is made larger. So long as the temperature
remains less than the Solar blackbody temperature, the system does not violate the Second Law of
Thermodynamics, since the radiative transfer is still acting to close the gap between the cold atmo-
spheric temperature and the hot Solar temperature. As the atmospheric temperature approaches
that of the Sun, however, it would no longer be appropriate to use the infrared emissivity, since
the atmosphere would then be radiating in the shortwave range. Kirchoff’s Law would come into
play, requiring a/e = 1. This would prevent the atmospheric temperature from approaching the
photospheric temperature.

If the shortwave absorptivity is small, the skin layer can be divided into any number of
sublayers, and the argument applies to determine the temperature of each one individually. This is
so because the small absorptivity of the upper layers do not take much away from the Solar beam
feeding absorption in the lower layers. We can then infer that the temperature of an absorbing
stratosphere will increase with height if the absorption increases with height, making asw/eir

increase with height.

Armed with our new understanding of the optically thin outer portions of planetary atmo-
spheres, let’s take another look at a few soundings. The skin temperature, defined in Eq 3.24,
provides a point of reference. It is shown for selected planets in Table 3.3. Except for the Martian
case, these values were computed from the global mean OLR, either observed directly (for Jupiter)
or inferred from the absorbed Solar radiation. In the case of present Mars, the fast thermal response
of the atmosphere and surface makes the global mean irrelevant. Hence, assuming the atmosphere
to be optically thin, we compute the skin temperature based on the upwelling infrared from a typ-
ical daytime summer surface temperature corresponding to the Martian soundings of Figure 2.2.
The tropical Earth atmosphere sounding shown in Fig. 2.1 shows that the temperature increases
sharply with height above the tropopause. This suggests that solar absorption is important in the
Earth’s stratosphere. For Earth, the requisite solar absorption is provided by ozone, which strongly
absorbs Solar ultraviolet. This is the famous ”ozone layer,” which shields life on the surface from
the sterilizing effects of deadly Solar ultraviolet rays. However, it is striking and puzzling that vir-
tually the entire stratosphere is substantially colder than the skin temperature based on the global
mean radiation budget. The minimum temperature in the sounding is 188K, which is fully 26K
below the skin temperature. If anything, one might have expected the tropical temperatures to
exceed the global mean skin temperatures, because the local tropospheric temperatures are warmer
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Skin temperature
Venus 213.
Earth 214.
Mars (255K sfc) 214.
Jupiter 106.
Titan 72.

Table 3.3: Computed skin temperatures of selected planets.

than the global mean. A reasonable conjecture about what is going on is that high, thick tropical
clouds reduce the local OLR, thus reducing the skin temperature. However, the measured tropical
OLR In Fig. 3.7 shows that at best clouds reduce the tropical OLR to 240W/m2, which yields the
same 214K skin temperature computed from the global mean budget. Apart from possible effects
of dynamical heat transports, the only way the temperature can fall below the skin temperature is
if the infrared emissivity becomes greater than the infrared absorptivity. This is possible, without
violating Kirchoff’s law, if the spectrum of upwelling infrared is significantly different from the
spectrum of infrared emitted by the skin layer. We will explore this possibility in the next chapter.

Referring to Fig. 2.2 we see that the temperature of the Martian upper atmosphere declines
steadily with height, unlike Earth; this is consistent with Mars’ CO2 atmosphere, which has only
relatively weak absorption in the Solar near infrared spectrum. The Martian upper atmosphere
presents the same quandary as Earth’s though, in that the temperatures fall well below the skin
temperature estimates. Just above the top of the Venusian troposphere, there is an isothermal
layer with temperature 232K, just slightly higher than the computed skin temperature. However,
at higher altitudes, the temperature falls well below the skin temperature, as for Mars.

Between 500mb and 100mb, just above Titan’s troposphere, Titan has an isothermal layer
with temperature of 75K, which is very close to the skin temperature. Above 100mb, the at-
mosphere warms markedly with height, reaching 160K at 10mb. The solar absorption in Titan’s
stratosphere is provided mostly by organic haze clouds. Jupiter, like Titan, has an isothermal layer
just above the troposphere, whose temperature is very close to the skin temperature. Jupiter’s
atmosphere also shows warming with height; its upper atmosphere becomes nearly isothermal at
150K, which is 44K warmer than the skin temperature. This indicates the presence of solar ab-
sorbers in Jupiter’s atmosphere as well, though the solar absorption is evidently more uniformly
spread over height on Jupiter than it is on Earth or Titan.

We have been using the term ”stratosphere” rather loosely, without having attempted a
precise definition. It is commonly said, drawing on experience with Earth’s atmosphere, that a
stratosphere is an atmosphereic layer within which temperature increases with height. This would
be an overly restrictive and Earth-centric definition. The dynamically important thing about a
stratosphere is that it is much more stably stratified than the troposphere, i.e. that its temperature
goes down less steeply than the adiabat appropriate to the planet under consideration. The
stable stratification of a layer indicates that convection and other dynamical stirring mechanisms
are ineffective or absent in that layer, since otherwise the potential temperature would become
well mixed and the temperature profile would become adiabatic. An isothermal layer is stably
stratified, because its potential temperature increases with height; even a layer like that of Mars’
upper atmosphere, whose temperature decreases gently with height, can be stably stratified. We
have shown that an optically thin stratosphere is isothermal in the absence of solar absorption.
Indeed, this is often taken as a back-of-the envelope model of stratospheres in general, in simple
calculations. In the next chapter, we will determine the temperature profile of stratospheres that
are not optically thin.
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In a region that is well mixed in the vertical, for example by convection, will have a tem-
perature that decreases with height. Dynamically speaking, such a mixed layer constitutes the
troposphere. By contrast the stratosphere may be defined as the layer above this, within which
vertical mixing plays a much reduced role. Note, however, that the temperature minimum in a pro-
file need not be coincident with the maximum height reached by convection; will revisit this matter
in Chapter 7. Yet a further complication is that, in midlatitudes, large scale winds associated with
storms are probably more important than convection as the stirring mechanism establishing the
tropopause.

We conclude this chapter with a few comparisons of observed tropopause heights with the
predictions of the optically thin limit. We’ll leave Venus out of this comparison, since its atmosphere
is about as far from the optically thin limit as one could get. On Mars, using the dry adiabat for
CO2 and a 5mb surface pressure puts the tropopause at 2.4mb, which is consistent with the top
of the region of steep temperature decline seen in the daytime Martian sounding in Fig. 2.2. For
Titan, we use the dry adiabat for N2 and predict that the tropopause should be at 816mb,which
is again consistent with the sounding. If we use the methane/nitrogen moist adiabat instead of
the nitrogen dry adiabat, we put the tropopause distinctly higher, at about 440mb. Because the
moist adiabatic temperature decreases less rapidly with height than the dry adiabat, one must go
to greater elevations to hit the skin temperature (as in Fig. 3.14). The tropopause height based
on the saturated moist adiabat is distinctly higher than seems compatible with the sounding, from
which we infer that the low levels of Titan must be undersaturated with respect to Methane. Using
R/cp = 2

7 for Earth air and 1000mb for the surface pressure, we find that the Earth’s tropopause
would be at 545mb in the optically thin, dry limit. This is somewhat higher in pressure (lower
in altitude) that the actual midlatitude tropopause, and very much higher in pressure than the
tropical tropopause. Earth’s real atmosphere is not optically thin, and the lapse rate is less steep
than the dry adiabat owing to the effects of moisture. The effects of optical thickness will be treated
in detail in Chapter 7, but we can already estimate the effect of using the moist adiabat. Using
the computation of the water-vapor/air moist adiabat described in Chapter 2, the tropopause
rises to 157mb, based on a typical tropical surface temperature of 300K and the skin temperature
estimated in Table 3.3. This is much closer to the observed tropopause (defined as the temperature
minimum in the sounding), with the remaining mismatch being accounted for by the fact that the
minimum temperature is appreciably colder than the skin temperature.

3.7 For Further Reading
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Chapter 4

Radiative transfer in
temperature-stratified
atmospheres

4.1 Overview

Our objective in this chapter is to treat the computation of a planet’s energy loss by infrared emis-
sion in sufficient detail that the energy loss can be quantitatively linked to the actual concentration
of specific greenhouse gases in the atmosphere. Unlike the simple model of the greenhouse effect
described in the preceding chapter, the infrared radiation in a real atmosphere does not all come
from a single level; rather, a bit of emission is contributed from each level (each having its own
temperature), and a bit of this is absorbed at each intervening level of the atmosphere. The ra-
diation comes out in all directions, and the rate of emission and absorption is strongly dependent
on frequency. Dealing with all these complexities may seem daunting, but in fact it can all be
boiled down to a conceptually simple set of equations which suffice for a vast range of problems in
planetary climate.

It was shown in Chapter 3 that there is almost invariably an order of magnitude separation
in wavelengths between the shortwave spectrum at which a planet receives stellar radiation and
the longwave (generally infrared) spectrum at which energy is radiated to space. This is true
throughout the Solar system, for cold bodies like Titan and hot bodies like Venus, as well as for
bodies like Earth that are habitable for creatures like ourselves. The separation calls for distinct
sets of approximations in dealing with the two kinds of radiation. Infrared is both absorbed
and emitted by an atmosphere, at typical planetary temperatures. However, the long infrared
wavelengths are not appreciably scattered by molecules or water clouds, so scattering can be
neglected in many circumstances. One of the particular challenges of infrared radiative transfer
is the intricate dependence of absorption and emission on wavelength. The character of this
dependence is linked to the quantum transitions in molecules whose energy corresponds to infrared
photons; it requires an infrared-specific description.

In contrast, planets do not emit significant amounts of radiation in the shortwave spec-
trum, though shortwave scattering by molecules and clouds is invariably significant; absorption of
shortwave radiation arises from quite different molecular processes than those involved in infrared
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absorption, and its wavelength-dependence has a correspondingly different character. Moreover,
solar radiation generally reaches the planet in the form of a nearly parallel beam, whereas infrared
from thermal emission by the planet and it’s atmosphere is more nearly isotropic. The approxima-
tions pertinent to shortwave radiation will be taken up in Chapter 5, where we will also consider
the effects of scattering on thermal infrared.

We’ll begin with a general formulation of the equations of plane-parallel radiative transfer
without scattering, in Section 4.2. Though we will be able to derive certain general properties
of the solutions of these equations, the equations are not very useful in themselves because of
the problem of wavelength dependence. To gain further insight, a detailed examination of an
idealized model with wavelength-independent infrared emissivity will be presented in Section 4.3.
A characterization of the wavelength dependence of the absorption of real gases, and methods for
dealing with that dependence, will be given in Sections 4.4 and 4.5.

4.2 Basic Formulation of Plane Parallel Radiative Transfer

We will suppose that the properties of the radiation field and the properties of the medium through
which it travels are functions of a single coordinate, which we will take to be the pressure in a
hydrostatically balanced atmosphere. (Recall that in such an atmosphere there is a one to one
correspondence between pressure and altitude). This is the plane-parallel assumption. Although
the properties of planetary atmospheres vary geographically with horizontal position within the
spherical shell making up the atmosphere, in most cases it suffices to divide up the sphere into
patches of atmosphere which are much larger in the horizontal than they are deep, and over which
the properties can be considered horizontally uniform. In this case, vertical radiative transfer is
much more important than horizontal transfer, and the atmosphere can be divided up into a large
number of columns that act independently, insofar as radiative transfer is concerned.

In this section, we will develop an approximate form of the equations of plane parallel ra-
diative transfer. The errors introduced in this approximation are small enough that the resulting
equations are sufficiently accurate to form basis of the infrared radiative transfer component of vir-
tually all large scale climate models. These equations will certainly be good enough for addressing
the broad-brush climate questions that are our principal concern.

4.2.1 Optical thickness and the Schwarzschild equations

Although the radiation field varies in space only as a function of pressure, p, its intensity depends
also on direction. Let I(p, n̂, ν) be the flux density of electromagnetic radiation propagating in
direction n̂, measured at point p. This density is just like the Planck function B(ν, T ), except that
we allow it to depend on direction and position. The technical term for this flux density is spectral
irradiance. Now we suppose that the radiation propagates through a thin layer of atmosphere of
thickness δp as measured by pressure. The absorption of energy at frequency ν is proportional to
the number of molecules of absorber encountered; assuming the mixing ratio of the absorber to be
constant within the layer for small δp, the number of molecules encountered will be proportional
to δp, in accord with the hydrostatic law. By Kirchoff’s law, the absorptivity and emissivity of the
layer are the same; we’ll call the value δτν , and keep in mind that in general it will be a function of
ν. Let θ be the angle between the direction of propagation n̂ and the vertical, as shown in Figure
4.1. Now, let ∆τ∗ν be the emissivity (and absorptivity) of the layer for radiation propagating in the
direction θ = 0. We may define the proportionality between emissivity and pressure through the
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relation δτ∗ν = −κ∆p/g where g is the acceleration of gravity and κ is an absorption coefficient.
It has units of area per unit mass, and can be thought of as an absorption cross-section per unit
mass – in essence, the area taken out of the incident beam by the absorbers contained in a unit
mass of atmosphere. In general κ is a function of frequency, pressure, temperature and the mixing
ratios of the various greenhouse gases in the atmosphere. Passing to the limit of small δp, we can
define an optical thickness coordinate through the differential equation

dτ∗ν
dp

= −1
g
κ (4.1)

Since pressure decreases with altitude, τ∗ν increases with altitude. Radiation propagating at an
angle θ relative to the vertical acts just like vertically propagating radiation, except that the
thickness of each layer through which the beam propagates, and hence the number of absorbing
molecules encountered, is increased by a factor of 1/ cos θ. Hence, the optical thickness for radiation
propagating with angle θ is simply τν = τ∗ν / cos θ. The equations of radiative transfer can be
simplified by using either τν or τ∗ν in place of pressure as the vertical coordinate.

The specific absorption cross section κ depends on the number of molecules of each green-
house gas encountered by the beam and the absorption properties characteristic to each kind of
greenhouse gas molecule. Letting qi be the mass-specific concentration of greenhouse gas i, we
may write

κ(ν, p, T ) =
n∑

i=0

κi(ν, p, T )qi(p) (4.2)

The specific concentrations qi depend on p because we are using pressure as the vertical coordinate,
and the concentration of the gas may vary with height;a well-mixed greenhouse gas would have
constant qi. The dependence of the coefficients κi on p and T arises from certain aspects of the
physics of molecular absorption, to be discussed in Section 4.4.

Eq. 4.1 defines the optical thickness τ∗ν (p1, p2) for the layer between pressures p1 and p2.
Unless κ is constant, it is not proportional to |p1 − p2|, but it is a general consequence of the
definition that τ∗ν (p1, p2) = τ∗ν (p1, p

′)+τ∗ν (p′, p2) if p′ is between p1 and p2. Consider an atmosphere
with a single greenhouse gas having concentration q(p). Then, if κG is independent of p the optical
thickness can be expressed as τ∗ν (p1, p2) = κG` where ` is the path, defined by

`(p1, p2) = −
∫ p2

p1

q(p)
dp

g
(4.3)

The boundaries of the layer are generally chosen so as to make the path and optical thickness
positive. The path is the mass of greenhouse gas in the layer, per square meter of the planet’s
surface, and in mks units has units of kg/m2. If the greenhouse gas is well mixed then ` =
q · (p1 − p2)/g. Now, it often happens that κG increases linearly with pressure – a phenomenon
known as pressure broadening (alternatively collisional broadening for reasons that will eventually
become clear. If we write κG(p) = κG(po) · (p/po), then we can define an equivalent path

`e = −
∫ p2

p1

q(p)
p

po

dp

g
(4.4)

such that τ∗ν (p1, p2) = κG(po)`e much as before. The equivalent path still has units of mass per
unit area, but because of the pressure weighting will differ from the actual path. For example, if
the greenhouse gas is well-mixed then

`e =
1
g
q

1
2po

(p2
1 − p2

2) = q
p1 − p2

g

p1 + p2

2po
(4.5)



142CHAPTER 4. RADIATIVE TRANSFER IN TEMPERATURE-STRATIFIED ATMOSPHERES

Δτ*}θ

ΒΔτ*/cosθ I(τ*) – I(τ*)Δτ*/cosθ

I(τ*)

Figure 4.1: Sketch of the radiative energy balance for a slab of atmosphere illuminated by incident
radiation from below.

The equivalent path is thus the actual path weighted by the ratio of the mean pressure to the
reference pressure.

Consider now the situation illustrated in Fig. 4.1, in which radiation at a given frequency
and angle is incident on slab of atmosphere from below. In general, part of the incident radiation
is scattered into other directions. However, for infrared and longer wave radiation interacting
with gases, such scattering is negligible; scattering is also negligible for infrared interacting with
condensed cloud particles made of substances such as water, which are strong absorbers. Here,
we shall neglect scattering, though it will be brought back into the picture in Chapter 5. The
radiation at the same angle which comes out the top of the slab is then the incident flux minus
the small amount absorbed in the slab, plus the small amount emitted. Thus

I(τ∗ν + δτ∗ν , n̂, ν) = (1− δτ∗ν
cos θ

)I(τ∗ν , n̂, ν) + B(ν, T (τ∗ν ))
δτ∗ν
cos θ

(4.6)

or, passing to the limit of small δτ∗ν ,

d

dτ∗ν
I(τ∗ν , n̂, ν) = − 1

cos θ
[I(τ∗ν , n̂, ν)−B(ν, T (τ∗ν ))] (4.7)

For a precise solution, one needs to solve this equation separately for each θ and then integrate
over angles to get the net upward and downward fluxes. The angular distribution of radiation
changes with distance from the source, since radiation propagating near the direction θ = 0 or
θ = π decays more gradually than radiation with θ nearer to π/2. Hence, radiation that starts
out isotropic at the source (as is the blackbody emission) tends to become more forward-peaked
as it propagates. For some specialized problems, it is indeed necessary to solve for the angular
distribution explicitly in this fashion, which is rather computationally demanding. Fortunately,
the isotropy of the blackbody source term tends to keep longwave radiation isotropic enough to
allow one to make do with a much more economical approximate set of equations.

We can derive an equation for the net upward flux per unit frequency, I+, by multiplying Eq.
4.7 by cos θ and integrating over all solid angles in the upward-pointing hemisphere. Integrating
over the downward hemisphere yields the net downward flux I−. However, because of the factor
1/ cos θ on the right hand side of Eq. 4.7, the hemispherically averaged intensity appearing on the
right hand side is not I+. Instead, it is

∫
I(τ∗, n̂, ν)dΩ, or equivalently

∫ π/2

0
2πI(τ∗, θ, ν) sin θdθ.

One cannot proceed further without some assumption about the angular distribution. If we assume
that the distribution remains approximately isotropic, by virtue of the isotropic source B, then
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I(τ∗, θ, ν) is independent of θ, and hence the problematic integral becomes 2πI
∫ π/2

0
sin θdθ which

is equal to 2I+ under the assumption of isotropy. This result yields a closed equation for I+.
It states that, if the radiation field remains approximately isotropic, the decay rate is the same
as for unidirectional radiation propagating with an angle θ̄ such that cos θ̄ = 1

2 , i.e. θ̄ = 60o.
From now on we will deal only with this approximate angle-averaged form of the equations, and
use τν = τ∗/ cos θ̄ as our vertical coordinate. The choice cos θ̄ = 1

2 is by no means a unique
consequence of the assumption of isotropy. The fact is that an isotropic distribution is not an
exact solution of Eq. 4.7 except in a few very special limits, so that the choice we make is between
different errors of roughly the same magnitude. If we had calculated cos θ̄ by multiplying Eq. 4.7
by (cosθ)2 instead of cos θ before averaging over angles, we would have concluded cos θ̄ = 2

3 and this
would be an equally valid choice within the limitations of the isotropic approximation. Sometimes,
a judicious choice of cos θ̄ is used to maximize the fit to an angle-resolved calculation in some
regime of particular interest. For the most part we will simply use cos θ̄ = 1

2 in our calculations
unless there is a compelling reason to adopt a different value.

In terms of τν , the equations for the upward and downward flux are

d

dτν
I+ = −I+ + πB(ν, T (τν))

d

dτν
I− = I− − πB(ν, T (τν))

(4.8)

These are known as the two-stream equations, and will serve as the basis for all subsequent discus-
sion of radiative transfer in this book, save that we will incorporate the neglected scattering term
in Chapter 5.

Because of the neglect of scattering, the equations for I+ and I− are uncoupled, and each
consists of a linear, inhomogeneous first order differential equation. The solution can be obtained
by substituting I+ = A(τν) exp(−τν), and similarly for I−, which reduces the problem to evaluation
of a definite integral for A. The result is

I+(τν , ν) = I+(0)e−τν +
∫ τν

0

πB(ν, T (τ ′ν))e−(τν−τ ′ν)dτ ′ν

I−(τν , ν) = I−(τ∞)e−(τ∞−τν) +
∫ τ∞

τν

πB(ν, T (τ ′ν))e−(τ ′ν−τν)dτ ′ν

(4.9)

where τ ′ν is a dummy variable and τ∞ is the optical thickness of the entire atmosphere, i.e.
τ∗ν (ps, 0)/ cos θ̄. Note that τ∞ depends on ν in general, though we have suppressed the sub-
script for the sake of readability. The top of the atmosphere (p = 0) is at τ∞. The physical
content of these equations is simple: I+(τν , ν) consists of two parts. The first is the portion of the
emission from the ground which is transmitted by the atmosphere (the first term in the expres-
sion for I+). The second is the radiation emitted by the atmosphere itself, which appears as an
exponentially-weighted average (the second term in the expression for I+) of the emission from all
layers below τν , with more distant layers given progressively smaller weights. Similarly, I−(τν , ν) is
an exponentially-weighted average of the emission from all layers above τν , plus the transmission of
incident downward flux. The atmospheric emission to space will be most sensitive to temperatures
near the top of the atmosphere. This emission will dominate the OLR when the atmosphere is
fairly opaque to the radiation emitted from the ground, whereas the transmitted ground emission
will dominate when the atmosphere is fairly transparent. The downward radiation into the ground
will be most sensitive to temperatures nearest the ground.

In the long run, it will save us some confusion if we introduce special notation for tempera-
tures and fluxes at the boundaries; this will prove especially important when there is occasion to
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switch back and forth between pressure and optical thickness as a vertical coordinate. The temper-
ature at the top of the atmosphere (p = 0 or τ = τ∞) will be denoted by T∞,and the temperature
of the air at the bottom of the atmosphere (p = ps or τ = 0) will be called Tsa. For planets with a
solid or liquid surface this is the temperature of the gas in immediate contact with the surface. For
such planets, one must distinguish the temperature of the air from the temperature of the surface
(the ”ground”) itself, which will be called Tg. The outgoing and incoming fluxes at the top of
the atmosphere will be called I+,∞(ν) and I−,∞(ν) respectively, while the upward and downward
fluxes at the bottom of the atmosphere will be called I+,s(ν) and I−,s(ν)

For planets with a liquid or solid surface, we require that I+,s(ν) be equal to the upward
flux emitted by the ground, which is e(ν)B(ν, Tg), where e(ν) is the emissivity of the ground.
Continuity of the fluxes is required because, the air being in immediate contact with the ground,
there is no medium between the two which could absorb or emit radiation, nor is there any space
where radiation ”in transit” could temporarily reside. We generally assume that there is no infrared
radiation incident on the top of the atmosphere, so that the upper boundary condition is I−,∞ = 0.
The incident solar radiation does contain some near-infrared, but this is usually treated separately
as part of the shortwave radiation calculation (see Chapter 5). For planets orbiting stars with cool
photospheres, such as red giant stars, it might make sense to allow I−,∞ to be nonzero and treat
the incoming infrared simultaneously with the internally generated thermal infrared. Since the
radiative transfer equations are linear in the intensities, it is a matter of taste whether to treat the
incoming stellar infrared in this way, or as part of the calculation dealing with the shorter wave
part of the incoming stellar spectrum.

The weighting function appearing in the integrands in Eq. 4.9 is the transmission function.
Written as a function of pressure, it is

Tν(p1, p2) = e−|τν(p1)−τν(p2)| (4.10)

Tν(p1, p2) is the proportion of incident energy flux at frequency ν which is transmitted through a
layer of atmosphere extending from p1 to p2; whatever is not transmitted is absorbed in the layer.
Note that Tν(p, p′)dτ ′ν = dTν (with p held constant), if p < p′, and Tν(p, p′)dτ ′ν = −dTν if p > p′.
Using this result Eq. 4.9 can be re-written

I+(τν , ν) = I+,s(ν)Tν(p, ps)−
∫ ps

p′=p

πB(ν, T (p′))dTν(p, p′)

I−(τν , ν) = I−,∞(ν)Tν(0, p) +
∫ p

p′=0

πB(ν, T (p′))dTν(p, p′)
(4.11)

In the integrals above, the differential of Tν is meant to be taken with p held fixed. Integration by
parts then yields the following alternate form of the solution to the two-stream equations:

I+(p, ν) = πB(ν, T (p)) + (I+,s(ν)− πB(ν, Tsa))Tν(p, ps) +
∫ ps

p

πTν(p, p′)dB(ν, T (p′))

I−(p, ν) = πB(ν, T (p)) + (I−,∞(ν)− πB(ν, T∞))Tν(0, p)−
∫ p

0

πTν(p, p′)dB(ν, T (p′))
(4.12)

Neither of these forms of the solution is particularly convenient for analytic work, but either one
can be used to good advantage when carrying out approximate integrations via the trapezoidal
rule (see Section 4.4.6). For analytical work, and some kinds of numerical integration, it helps to
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rewrite the integrand using dB = (dB/dT )(dT/dp′)dp′. The result is

I+(p, ν) = πB(ν, T (p)) + (I+,s(ν)− πB(ν, Tsa))Tν(p, ps) +
∫ ps

p

πTν(p, p′)
dB

dT
|T (p′)

dT

dp′
dp′

I−(p, ν) = πB(ν, T (p)) + (I−,∞(ν)− πB(ν, T∞))Tν(0, p)−
∫ p

0

πTν(p, p′)
dB

dT
|T (p′)

dT

dp′
dp′

(4.13)

A considerable advantage of any of the forms in Eq. 4.11, 4.12 or 4.13 is that the integration
variable p′ is no longer dependent on frequency. This will prove particularly useful when we come
to consider real gases, for which the optical thickness has an intricate dependence on frequency.
The first two terms in the expression for the fluxes in either Eq. 4.12 or 4.13 give the exact result for
an isothermal atmosphere; in each case, the first of the two terms represents the contribution of the
local blackbody radiation, whereas the second accounts for the modifying effect of the boundaries.
The boundary terms vanish at points far from the boundary, where T is small. Note that the
boundary term for I+ vanishes identically if the upward flux at the boundary has the form of
blackbody radiation with temperature equal to the surface air temperature. For a planet with a
solid or liquid surface, this would be the case if the ground temperature equals the surface air
temperature and the ground has unit emissivity.

The main reason for dealing with radiative transfer in the atmosphere is that one needs to
know the amount of energy deposited in or withdrawn from a layer of atmosphere by radiation.
This is the radiative heating rate (with negative heating representing a cooling). It is obtained by
taking the derivative of the net flux, which gives the difference between the energy entering and
leaving a thin layer. The heating rate per unit optical thickness, per unit frequency, is thus

Hν = − d

dτν
(I+(τν , ν)− I−(τν , ν)) (4.14)

This must be integrated over all frequencies to yield the net heating rate. For making inferences
about climate, one ordinarily requires the heating rate per unit mass rather than the heating rate
per unit optical depth. This is easily obtained using the definition of optical depth, specifically,

Hν = g
d

dp
(I+ − I−) = g

dτν

dp

d

dτν
(I+ − I−) =

κ

cos θ̄
Hν (4.15)

When integrated over frequency this heating rate has units W/kg. One can convert into a tem-
perature tendency K/s by dividing this value by the specific heat cp.

4.2.2 Some special solutions of the Two-Stream equations

Beer’s law

Suppose that the atmosphere is too cold to radiate significantly at the frequency under consider-
ation. In that case, B(ν, T ) ≈ 0 and the internal source vanishes. This would be the case, for
example, if ν is in the visible light range and the temperature of the atmosphere is Earthlike.
In this case, the solutions are simply I+ = I+(0) exp(−τν) and I− = I−(τ∞)exp(τν − τ∞). The
exponential attenuation of radiation is known as Beer’s Law. Here we’ve neglected scattering, but
in Chapter 5 we’ll see that a form of Beer’s law still applies even if scattering is taken into account.



146CHAPTER 4. RADIATIVE TRANSFER IN TEMPERATURE-STRATIFIED ATMOSPHERES

Infinite isothermal medium

Consider next an unbounded isothermal medium. In this case, it is readily verified that I+ =
I− = πB(ν, T ) is an exact solution to 4.9. The right hand sides of the equations vanish, but
the derivatives on the left hand sides vanish also, because T is independent of τν . Hence, in an
unbounded isothermal medium, the radiation field reduces to uniform blackbody radiation.

Since the fluxes are independent of τν , the radiative heating rate vanishes, from which we
recover the fact that blackbody radiation is in equilibrium with an extended body of isothermal
matter.

Exercise 4.2.1 Derive this result from Eq. 4.9; from Eq. 4.13.

Finite-thickness isothermal slab

Now let’s consider an isothermal layer of finite thickness, embedded in an atmosphere which is
completely transparent to radiation at frequency ν. We suppose further that there is no radiation
at this frequency incident on the layer from either above or below. We are free to define τν = 0 at
the center of the layer, so that τν = 1

2τ∞ at the top of the layer and τν = − 1
2τ∞ at the bottom.

The boundary conditions corresponding to no incident flux are I− = 0 at the top of the layer
and I+ = 0 at the bottom of the layer. The solution I+ = I− = πB is still a particular solution
within the layer, since the layer is isothermal, but it does not satisfy the boundary conditions. A
homogeneous solution must be added to each flux in order to satisfy the boundary conditions. The
homogeneous solutions are just exponentials, and so we easily find that the full solution within the
layer is

I+(τν , ν) = [1− exp(−(τ +
τ∞
2

))]πB

I−(τν , ν) = [1− exp(+(τ − τ∞
2

))]πB
(4.16)

Exercise 4.2.2 Derive this result from Eq. 4.13.

The radiation emitted out the top of the layer is I+(τ∞, ν), or (1 − exp(−τ∞))πB, which
reduces to the blackbody value πB when the layer is optically thick for the frequency in question,
i.e. τ∞(ν) � 1. The same applies for the emission out of the bottom of the layer, mutatis
mutandum. Note that in the optically thick limit, I+ = I− = πB through most of the layer, and
the inward-directed intensities only fall to zero in the two relatively thin skin layers near the top
and bottom of the slab.

In the opposite extreme, when the slab is optically thin, both τ and τ∞ are small. Using
the first order Taylor expansion of the exponentials, we find that the emission out the top of the
layer is τ∞πB, and similarly for the bottom of the layer. Hence, τ∞ in this case is just the bulk
emissivity of the layer. This is consistent with the way we constructed the Schwarzschild equations,
which can be viewed as a matter of stacking a great number of individually optically thin slabs
upon each other.

Substituting into Eq. 4.14, the heating rate for this solution is

Hν = −[exp(−τ) + exp(τ)] exp(−τ∞
2

)πB (4.17)
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In the optically thick case, the heating rate is nearly zero in the interior of the slab, but there is
strong radiative cooling within about a unit optical depth of each surface. In this case the radiation
drains heat out of a thin skin layer near each surface, causing intense cooling there. In the optically
thin limit, the cooling is distributed uniformly throughout the slab.

It turns out that condensed water is a much better infrared absorber than the same mass of
water vapor. Hence, an isolated absorbing layer such as we have just considered can be thought
of as a very idealized model of a cloud. The following slight extension makes the connection with
low lying stratus clouds, such as commonly found over the oceans, more apparent.

Exercise 4.2.3 Instead of being suspended in an infinite transparent medium, suppose that the
cloud is in contact with the ground, and that the ground has the same temperature as the cloud.
We still assume that the air above the cloud is transparent to radiation at the frequency under
consideration. Compute the upward and downward fluxes, and the radiative heating rate, in this
case.

This exercise shows that convection in boundary layer stratus clouds can be driven by
cooling at the top, rather than heating from below. This is rather important, since the reflection
of sunlight by the cloud makes it hard to warm up the surface. Entrainment of dry air due to
top-driven convection is one of the main mechanisms for dissipating such clouds.

Optically thick limit

We now depart from the assumption of constant temperature. While allowing T to vary in the
vertical, we assume the atmosphere to be optically thick at frequency ν. This means that a small
change in pressure p amounts to a large change in the optical thickness coordinate τν . Referring,
to Eq. 4.1, we see that the assumption of optical thickness is equivalent to the assumption that
κδp/g � 1, where δp is the typical amount by which one has to change the pressure in order for
the temperature to change by an amount comparable to its mean value. For most atmospheres,
it suffices to take δp to be the depth of the whole atmosphere, namely ps, so that the optical
thickness assumption becomes τ∞ = κps/g � 1 Since κ depends on frequency, an atmosphere may
be optically thick near one frequency, but optically thin near another.

The approximate form of the fluxes in the optically thick limit can be most easily derived
from the integral expression in the form given in Eq. 4.9. Consider first the expression for I+.
Away from the immediate vicinity of the bottom boundary, the boundary term proportional to
Tν(p, ps) is exponentially small and can be dropped. To simplify the integral, we note that Tν(p, p′)
is very small unless p′ is close to p. Therefore, as long as the temperature gradient is a continuous
function of p′, it varies little over the range of p′ for which the integrand contributes significantly to
the integral. Hence dT/dp′ can be replaced by its value at p, which can then be taken outside the
integral. Likewise, dB/dT can be evaluated at T (p), so that this term can also be taken outside
the integral. Finally, if one is not too close to the bottom boundary,∫ ps

p

Tν(p′, p)dp′ ≈
∫ ∞

p

Tν(p′, p)dp′ =
g cos θ̄

κ

∫ ∞

τ

Tν(τ ′, τ)dτ ′ =
g cos θ̄

κ
, (4.18)

whence the upward flux in the optically thick limit becomes

I+(ν, p) = πB(ν, T (p)) + π
g cos θ̄

κ

dB

dT
|T (p)

dT

dp
(4.19)
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Near the bottom boundary, the neglected boundary term would have to be added to this expression.
In addition, Eq. 4.18 would need to be corrected to allow for the fact that there is not room for∫

T to integrate out to its asymptotic value for an infinitely thick layer.

Using identical reasoning, the downward flux becomes

I−(ν, p) = πB(ν, T (p))− π
g cos θ̄

κ

dB

dT
|T (p)

dT

dp
(4.20)

so long as one is not too near the top of the atmosphere. Near the top of the atmosphere, the
neglected boundary term becomes significant.

In both expressions the second term, proportional to the temperature gradient, becomes
progressively smaller as κ is made larger and the atmosphere becomes more optically thick. To
lowest order, then, the upward and downward fluxes are both equal to the blackbody radiation flux
at the local temperature. In this sense, the optically thick limit looks ”locally isothermal.” The term
proportional to the temperature gradient represents a small correction to the locally isothermal
behavior. In the expression for I+, for example, if dT/dp > 0 the correction term makes the upward
flux somewhat greater than the local blackbody value. This makes sense, because a small portion
of the upwelling radiation comes from lower layers where the temperature is warmer than the local
temperature. Note that the correction term depends on ν through the frequency dependence of κ,
as well as through the frequency dependence of dB/dT .

The radiation exiting the top of the atmosphere (I+,∞) is of particular interest, because it
determines the rate at which the planet loses energy. In the optically thick approximation, we
find that as long as dT/dp is finite at p = 0, I+,∞ becomes close to πB(ν, T∞) as the atmosphere
is made more optically thick. Hence, at frequencies where the atmosphere is optically thick, the
planet radiates to space like a blackbody with temperature equal to that of the upper regions of
the atmosphere – the regions ”closest” to outer space.

Similarly, the downward radiation (I−,s(ν)) from the atmosphere into the ground – some-
times called the back radiation – is of interest because it characterizes the radiative effect of the
atmosphere on the surface energy budget. In the optically thick limit, I−,s(ν) = πB(ν, Tsa) to
lowest order, so that the atmosphere radiates to the ground like a blackbody with temperature
equal to the low level air temperature. If dT/dp > 0 at the ground, as is typically the case, then
the correction term slightly reduces the downward radiation, because some of the radiation into
the ground comes from higher altitudes where the air is colder. Suppose now that the surface
temperature Tg is equal to the air temperature Tsa, and that the surface has unit emissivity at the
frequency under consideration. In that case, the net radiative heating of the ground is

I−,s(ν)−B(ν, Tg) = I−,s(ν)−B(ν, Tsa) = −π
g cos θ̄

κ

dB

dT
|Tsa

dT

dp
|ps (4.21)

at frequencies where the solar flux is negligible. This is negative when dT/dp > 0, representing
a radiative cooling of the ground. The radiative cooling vanishes in the limit of large κ. In
the optically thick limit, then, the surface cannot get rid of heat by radiation unless the ground
temperature becomes larger than the low level air temperature. Remember, though, that the
radiative heating of the ground is but one term in the surface energy budget coupling the surface
to the atmosphere. Turbulent fluxes of moisture and heat also exchange energy between the surface
and the atmosphere, and these become dominant when the radiative term is weak.

In the optically thick limit, the net flux is
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I+ − I− = 2π
g cos θ̄

κ

dB

dT

dT

dp
(4.22)

whence the radiative heating rate is

Hν =
d

dp
[D(ν, p)

dT

dp
] (4.23)

where

D(ν, p) = 2π
g2 cos θ̄

κ

dB

dT
|T (p) (4.24)

Hence, in the optically thick limit, the heating and cooling caused by radiative transfer acts just like
a thermal diffusion in pressure coordinates, with the diffusivity given by D(ν, p). Since dB/dT > 0,
the radiative diffusivity is always positive. It becomes weak as κ becomes large. Note that the
diffusive approximation to the heating is is only valid when one is not too close to the top and
bottom of the atmosphere. Near the boundaries, the neglected boundary terms contribute an
additional heating which is exponentially trapped near the top and bottom of the atmosphere.
The effect of the boundary terms is explored in Problem ??

Consider an atmosphere which is transparent to solar radiation, and within which heat is
redistributed only by infrared radiative transfer. Eq 4.15 then requires that the net upward flux
I+−I− must be independent of altitude when integrated over all wavenumbers. This constant flux
is nonzero, since the infrared flux through the system is set by the rate at which infrared escapes
from the top of the atmosphere – namely, the OLR. Integrating Eq. 4.22 over the infrared yields
an expression for dT/dp in terms of the OLR and the frequency-integrated diffusivity; because
both OLR and diffusivity are positive, it follows that dT/dp > 0 for an optically thick atmosphere
in pure infrared radiative equilibrium – that is, the temperature decreases with altitude. The more
optically thick the atmosphere becomes, the smaller is D, and hence the stronger is the temperature
variation in equilibrium. Pure radiative equilibrium will be discussed in detail in Sections 4.3.4
and 4.8, and the optically thick limit is explored in Problem ??.

Optically thin limit

The optically thin limit is defined by τ∞ � 1. Since τν ≤ τ∞ and τ ′ν ≤ τ in Eq. 4.9, all the
exponentials in the expression for the fluxes are close to unity. Moreover, the integral is carried
out over the small interval [0, τν ], and hence is already of order τ∞ or less. It is thus a small
correction to the first term, and we may set the exponentials in the integrand to unity and still
have an expression that is accurate to order τ∞. The boundary terms are not integrated, though,
so we must retain the first two terms in the Taylor series expansion of the exponential to achieve
the same accuracy. With these approximations, the fluxes become

I+(τν) = (1− τν)I+,s +
∫ τν

0

πB(ν, T (τ ′ν))dτ ′ν

I−(τν) = (1− (τ∞ − τν))I−,∞ +
∫ τ∞

τν

πB(ν, T (τ ′ν))dτ ′ν

(4.25)

In this case, the upward flux is the sum of the upward flux from the boundary (diminished by the
slight atmospheric absorption on the way up) with the sum of the unmodified blackbody emission
from all the layers below the point in question. The downward flux is interpreted similarly.
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In order to discuss the radiation escaping the top of the atmosphere and the back-radiation
into the ground, we introduce the mean emission temperature T̄ν , defined by solving the relation

B(T̄ν , ν) =
1

τ∞

∫ τ∞

0

B(ν, T (τ ′ν))dτ ′ν (4.26)

With this definition, the boundary fluxes are

I+,∞ = (1− τ∞)I+(0) + τ∞πB(T̄ν , ν)
I−,s = (1− τ∞)I−,∞) + τ∞πB(T̄ν , ν)

(4.27)

According to this expression, an optically thin atmosphere acts precisely like an isothermal slab
with temperature T̄ν and (small) emissivity τ∞. It is only in the optically thin limit that the
radiative effect of the atmosphere mimics that of an isothermal slab.

Substituting the approximate form of the fluxes into the expression for radiative heating
rate, we find

Hν =
κ

cos θ̄
· [(I+,s + I−,∞)− 2πB(ν, T (p))] (4.28)

This is small, because κ is small in the optically thin limit. The first pair of terms are always
positive, and represent heating due to the proportion of incident fluxes which are absorbed in the
atmosphere. The second term is always negative, and represents cooling by blackbody emission of
the layer of air at pressure p. In contrast to the general case or the optically thick case, the cooling
term is purely a function of the local temperature; radiation emitted by each layer escapes directly
to space or to the ground, without being significantly captured and re-emitted back by any other
layer.

Typical greenhouse gases are optically thin in some spectral regions and optically thick in
others. We have seen that the infrared heating rate becomes small in both limits. From this result,
we deduce the following general principle: The infrared heating rate of an atmosphere is dominated
by the spectral regions where the optical thickness is order unity. If an atmosphere is optically thick
throughout the spectrum, the heating is dominated by the least thick regions; if it is optically thin
throughout, it is dominated by the least thin regions.

4.3 The Grey Gas Model

We will see in Section 4.4 that for most atmospheric gases κ, and hence the optical thickness,
has an intricate dependence on wavenumber. This considerably complicates the solution of the
radiative transfer equations, since the fluxes must be solved for individually on a very dense grid
of wavenumbers, and then the results integrated to yield the net atmospheric heating, which is
the quantity of primary interest. The development of shortcuts that can improve on a brute-force
integration is an involved business, which in some respects is as much art as science, and leads
to equations whose behavior can be difficult to fathom. The radiative transfer equations become
much simpler if the optical thickness is independent of wavenumber. This is known as the grey gas
approximation. For grey gases, the Schwartzschild equations can be integrated over wavenumber,
yielding a single differential equation for the net upward and downward flux. More specifically,
we shall assume only that the optical thickness is independent of wavenumber within the infrared
spectrum, and that the temperature of the planet and its atmosphere is such that essentially all the
emission of radiation lies in the infrared. Instead of integrating over all wavenumbers, we integrate
only over the infrared range, thus obtaining a set of equations for the net infrared flux. Because
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of the assumption regarding the emission spectrum, the integrals of the Planck function πB(ν, T )
over the infrared range can be well approximated by σT 4.

With the exception of clouds of strongly absorbing condensed substances like water, the
grey gas model yields a poor representation of radiative transfer in real atmospheres, for which the
absorption is typically strongly dependent on wavenumber. Nonetheless, a thorough understanding
of the grey gas model provides the starting point for any deeper inquiry into atmospheric radiation.
Here, we can find many of the fundamental phenomena laid bare, because one can get much
farther before resorting to detailed numerical computations. Further, grey gas radiation has proved
valuable as a placeholder radiation scheme in theoretical studies involving the coupling of radiation
to fluid dynamics, when one wants to focus on dynamical phenomena without the complexity and
computational expense of real gas radiative transfer. Sometimes, a simple scheme which is easy to
understand is better than an accurate scheme which defies comprehension.

The grey gas versions of the two-stream Schwarzschild equations are obtained by making τν

independent of frequency and integrating the resulting equations over all frequencies. The result
is

d

dτ
I+ = −I+ + σT (τ)4

d

dτ
I− = I− − σT (τ)4

(4.29)

Grey gas versions of the solutions given in the previous section can similarly be obtained by
integrating the relations over all frequencies, taking into account that τ is now independent of ν.
The expressions have precisely the same form as before, except that I+ and I− now represent total
flux integrated over all longwave frequencies, and every occurence of πB is replaced by σT 4. To
avoid unnecessary proliferation of notation, when the context allows little possibility of confusion
we will use the same symbols I+ and I− to represent the longwave-integrated flux as we used
earlier to represent the frequency-dependent flux spectrum. When we need to emphasize that a
flux is a frequency dependent spectrum, we will include the dependence explicitly (as in ”I+(ν)”
or ”I+(ν, p)”; when we need to emphasize that a flux represents the longwave-integrated net flux,
we will use an overbar (as in Ī+).

4.3.1 OLR and back-radiation for an optically thin grey atmosphere

The OLR and surface back-radiation for an optically thin grey atmosphere are obtained by inte-
grating Eq. 4.27 over all frequencies. The result is

I+,∞ = (1− τ∞)I+(0) + τ∞σT̄ 4

I−,s = (1− τ∞)I−,∞ + τ∞σT̄ 4
(4.30)

where the mean atmospheric emission temperature is given by

T̄ 4 =
1

τ∞

∫ τ∞

0

T 4dτ (4.31)

The first term in the expression for I+,∞ is the proportion of upward radiation from the ground
which escapes without absorption by the intervening atmosphere, while the second is the emission
to space added by the atmosphere. In the expression for I−,s the first term is the proportion
of incoming infrared flux which reaches the surface without absorption, while the second is the
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downward emission from the atmosphere. Note that for an optically thin atmosphere the atmo-
spheric emission to space is identical to the atmospheric emission to the ground; in this regard the
atmosphere radiates like an isothermal slab with temperature T̄ . According to Eq. 4.27, a nongrey
atmosphere behaves similarly, if it is optically thin for all frequencies.

4.3.2 Radiative properties of an all-troposphere dry atmosphere

Let’s consider an atmosphere for which the convection is so deep that it establishes a dry adiabat
throughout the depth of the atmosphere. Thus, T (p) = Ts(p/ps)R/cp all the way to p = 0. We wish
to compute the OLR for this atmosphere, which is done by substituting this T (p) into the grey-gas
form of Eq. 4.9 and evaluating the integral for I+ at τ = τ∞, i.e. the top of the atmosphere. Since
the temperature is expressed as a function of pressure, it is necessary to substitute for pressure in
terms of optical thickness in order to carry out the integral. We’ll suppose that κ is a constant, so
that τ∞ − τ = κp/g = τ∞p/ps. Using this to eliminate pressure from T (p), the integral for OLR
becomes

OLR = I+,se
−τ∞ +

∫ τ∞

0

σT 4
s (

τ∞ − τ ′

τ∞
)4R/cpe−(τ∞−τ ′)dτ ′

= I+,se
−τ∞ +

∫ τ∞

0

σT 4
s (

τ1

τ∞
)4R/cpe−τ1dτ1

= I+,se
−τ∞ + σT 4

s τ−4R/cp
∞

∫ τ∞

0

τ
4R/cp

1 e−τ1dτ1

(4.32)

The second line is derived by introducing a new dummy variable τ1 = τ∞ − τ ′. This is the the
optical depth measured relative to the top of the atmosphere, and the re-expressed integral is
computed by integrating from the top down, rather than from the ground up. The first term on
the right hand side of Eq. 4.32 represents the proportion of the upward surface radiation which
survives absorption by the atmosphere and reaches space. The second term is the net emission
from the atmosphere. In the optically thin limit, the integral becomes small and the exponential
in the first term approaches unity; thus, the OLR approaches the emission from the ground, I+,s.
As the atmosphere is made more optically thick, the boundary term becomes exponentially small,
and the integral becomes more and more dominated by the emission from the upper reaches of the
atmosphere. However, to obtain the optically thick limit, we cannot use the grey gas form of Eq
4.19, since dT/dp becomes infinite at p = 0 when the dry adiabat extends all the way to the top
of the atmosphere.

In the optically thick limit, τ∞ � 1, the first term becomes exponentially small and the
upper limit of the integral can be replaced by ∞, yielding the expression

OLR = σT 4
s τ−4R/cp
∞ Γ(1 +

4R

cp
) (4.33)

where Γ is the Gamma function, defined by Γ(s) ≡
∫∞
0

ζs−1exp(−ζ)dζ. Using integration by parts,
Γ(s) = (s−1)Γ(s−1), while Γ(1) = 1, so Γ(n) = (n−1)!. For Earth air, 4R/cp = 8

7 so Γ(1+4R/cp)
will be close to Γ(2), which is unity; in fact it is approximately 1.06. For any of the gases commonly
found in planetary atmospheres, Γ(1 + 4R/cp) will be an order unity constant. As the atmosphere
is made more optically thick, the OLR goes down algebraically like τ

−4R/cp
∞ , becoming much less

than the value σT 4
s prevailing for a transparent atmosphere. The OLR approaches zero as τ∞ is

made large because the temperature vanishes at the top of the atmosphere, and as the atmosphere
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is made more optically thick, the OLR is progressively more dominated by the emission from the
cold upper reaches of the atmosphere.

The calculation can be related to the conceptual greenhouse effect model introduced in the
previous chapter by computing the effective radiating pressure prad. Recall that σT 4

rad = OLR, so

σT 4
s (

prad

ps
)4R/cp = OLR = σT 4

s τ−4R/cp
∞ Γ(1 +

4R

cp
) (4.34)

whence (prad/ps) = τ−1
∞ (Γ(1 + 4R/cp))cp/4R. This formula implies that the radiation to space

comes essentially from the top unit optical depth of the atmosphere. If an atmosphere has optical
depth τ∞ = 100, then it is only the layer between roughly the top of the atmosphere (τ = 100)
and τ = 99 which dominates the OLR. For the all-troposphere model, the maximum temperature
of the top unit optical depth approaches zero as the atmosphere is made more optically thick,
because this entire layer corresponds to pressures approaching zero ever more closely as κ is made
larger.

If S is the absorbed solar radiation per unit area of the planet’s surface, then the surface
temperature in balance with S is obtained by setting the OLR equal to S. Solving for the surface
temperature, we find that in the optically thick all-troposphere limit, the surface temperature is

Ts = (S/σ)
1
4 Γ(1 +

4R

cp
)−

1
4 · τR/cp

∞ (4.35)

The first term is the temperature the planet would have in the absence of any atmosphere. As τ∞
increases, the surface becomes warmer without bound. This constitutes our simplest quantitative
model of the greenhouse effect for a temperature-stratified atmosphere. Note that the greenhouse
warming depends on the lapse rate. For an isothermal atmosphere (R/cp = 0) there is no green-
house warming. For fixed optical depth, the greenhouse warming becomes larger as the R/cp, and
hence the lapse rate, becomes large. For Venus, the absorbed solar radiation is approximately
163W/m2, owing to the high albedo of the planet. For a pure CO2 atmosphere R/cp ≈ .2304, for
which Γ ≈ .969. Then, the 737K surface temperature of Venus can be accounted for if τ∞ = 156,
which is a very optically thick atmosphere. This is essentially the calculation used by Carl Sagan
to infer that the dense CO2 atmosphere of Venus could give it a high enough surface temperature
to account for the then-mysterious anomalously high microwave radiation emitted by the planet
(microwaves being directly emitted to space by the hot surface without significant absorption by
the atmosphere).

Exercise 4.3.1 This exercise illustrates the fact that if the Earth’s atmosphere acted like a grey
gas, then a doubling of CO2 would make us toast! Using Eq. 4.35, find the τ∞ that yields a
surface temperature of 285K for the Earth’s absorbed solar radiation (about 270W/m2 allowing a
crude correction for net cloud effects). Now suppose we double the greenhouse gas content of the
atmosphere. If the Earth’s greenhouse gases were grey gases, this would imply doubling the value
of τ∞ from the value you just obtained. What would the resulting temperature be? Note that this
rather alarming temperature doesn’t even fully take into account the amplifying effect of water
vapor feedback.

An examination of the radiative heating rate profile for the all-troposphere case provides
much insight into the processes which determine where the troposphere leaves off and where a
stratosphere will form. We’ll assume that I−,∞ = 0 and that the turbulent heat transfer at the
ground is efficient enough that Tsa = Tg. Consider first the optically thin limit, for which the grey
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gas version of Eq. 4.28 is
Hν =

κ

cos θ̄
· [σT 4

g − 2σT (p)4] (4.36)

assuming the stated boundary conditions. Since the radiative heating rate is nonzero, the tempera-
ture profile will not be in a steady state unless some other source of heating and cooling is provided
to cancel the radiative heating. According to Eq. 4.36, the atmosphere is cooling at low altitudes,
where T > Tg/2

1
4 , i.e. where the local temperature is greater than the skin temperature. The cool-

ing will make the atmosphere’s potential temperature lower than the ground temperature, which
allows the air in contact with the ground to be positively buoyant. The resulting convection brings
heat to the radiatively cooled layer, allowing a steady state to be maintained if the convection is
vigorous enough. However, in the upper atmosphere, where T < Tg/2

1
4 the atmosphere is being

heated by upwelling infrared radiation, and there is no obvious way that convection could provide
the cooling needed to make this region a steady state. Instead, the atmosphere in this region is
expected to warm until a stratosphere in pure radiative equilibrium forms. Indeed, the tropopause
as estimated by the boundary between the region of net heating and net cooling is located at the
point where T (p) equals the skin temperature; this is precisely the same result as we obtained in
the steady state model of the tropopause for an optically thin atmosphere, as discussed in Section
3.6.

In the optically thick limit it is easiest to infer the infrared heating profile from an exami-
nation of the expression for net infrared flux, which becomes

I+ − I− = 2
g cos θ̄

κ
(4σT 3)

dT

dp
= 8σT 4

g

R

cp

g2 cos θ̄

κps
(

p

ps
)4R/cp−1 (4.37)

in the all-troposphere grey-gas case. Recall that this expression breaks down in thin layers within
roughly a unit optical depth of the bottom and top boundaries. The formula shows that whether the
bulk of an optically thick atmosphere is heating or cooling depends on the lapse rate. The formula
is valid even if κ depends on pressure and temperature. For constant κ, if 4R/cp > 1 the optically
thick net flux decreases with height, and most of the atmosphere is heated by infrared radiation,
and hence we expect a deep stratosphere and shallow troposphere. If 4R/cp < 1, corresponding
to a weaker temperature lapse rate, most of the atmosphere instead experiences infrared radiative
cooling, so we expect a deep troposphere. For constant κ, most gases would produce a deep
stratosphere in the optically thick limit. This conclusion is greatly altered by pressure broadening.
If κ(p) = (p/ps)κ(ps), then the appearance of the pressure factor in the denominator alters the
flux profile. Specifically, we now only require that 4R/cp < 2 in order for the flux to increase with
height, yielding radiative cooling throughout the depth where the approximation is valid. Most
atmospheric gases satisfy this criterion, and therefore most gases ought to yield a deep troposphere
in the optically thick limit.

The above expectations regarding tropopause height will be confirmed in Chapter 7. Real
gases are typically optically thick at some wavenumbers but optically thin at others, and we shall
see in Section 4.9 how the competition plays out

Figure 4.2 shows numerically computed profiles of net infrared flux (I+−I−) without pressure
broadening, for a range of optical thicknesses, with R/cp = 2

7 . In this case, 4R/cp > 1, and we
expect deep heating in the optically thick limit. For τ∞ = 50 the profile does follow the optically
thick approximate form over most of the atmosphere, and exhibits a decrease in flux with height,
implying deep heating. There is a thin layer of cooling near the ground, where the optically
thick formula breaks down. When τ∞ = 10, the flux only conforms to the optically thick limit
near the center of the atmosphere; there is a region of infrared cooling that extends from the
ground nearly to 70% of the surface pressure. The case τ∞ = 1 looks quite like the optically
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Figure 4.2: Net infrared flux (I+ − I−) for the all-troposphere grey-gas model, for τ∞ = 1, 10 and
50. In the latter two cases, the dashed line gives the result of the optically thick approximation.
The surface temperature is fixed at 300K, and the temperature profile is the dry adiabat with
R/cp = 2

7 .

thin limit, with the lower half of the atmosphere cooling and the upper half heating. Numerical
computations incorporating pressure broadening confirm the predictions of the optically thick
formula. Specifically, the boundary between cooling and heating is unchanged for optically thin
atmospheres, but rises to p/ps = .24 for τ∞ = 10 and to p/ps = .11 for τ∞ = 50. The profiles are
not shown here, but are explored in Problem ??.

The troposphere is defined as the layer stirred by convection, and since hot air rises, buoyancy
driven convection transports heat upward where it is balanced by radiative cooling. Therefore, at
least the upper region of a troposphere invariably experiences radiative cooling. In the calculation
discussed above, the layer with cooling, fated to become the troposphere, occurs in the lower
portion of the atmosphere. In Figure 4.2 one notices that the radiative cooling decreases as
the atmosphere is made more optically thick, suggesting that tropospheric convection becomes
more sluggish in an optically thick atmosphere, there being less radiative cooling to be offset
by convective heating. However, one should note also that this sequence of calculations is done
with fixed surface temperature, and that the OLR decreases as optical thickness is made larger.
Hence, in the optically thick cases, it takes less absorbed solar radiation to maintain the surface
temperature of the planet. There is less flux of energy through the system, and correspondingly
less convection. Mars, at a more distant orbit than Earth, receives less solar energy; if Mars were
given an atmosphere with enough greenhouse effect to warm it up to Earthlike temperatures, one
would expect the radiative cooling in its troposphere to be less than Earth’s, and one would expect
the convection to be more sluggish.

The presence of a stratosphere causes the OLR to exceed the values implied by the all-
troposphere calculation, since the upper portions of an atmosphere with a stratosphere are warmer
than the all-troposphere model would predict. If the stratosphere is optically thin, it has a minor
effect on the OLR; in essence, the all-troposphere OLR formula provides a good estimate if the
effective radiating level is below the tropopause. If the stratosphere becomes optically thick, then
the OLR is in fact determined by the stratospheric structure. Problem ?? explores some aspects of
the effect of an optically thick stratosphere on OLR. Puzzling out the effect of the stratosphere on
OLR is rather tricky, because the tropopause height itself depends on the optical thickness of the
atmosphere. An optically thin atmosphere obviously can’t have an optically thick stratosphere, but
an optically thick atmosphere can nevertheless have an optically thin stratosphere if the tropopause
height increases rapidly enough with τ∞. The grey gas radiative cooling profiles discussed above
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suggest that the stratosphere becomes optically thick when 4R/cp > 1. In contrast, for 4R/cp < 1
the radiatively cooled layer extends toward the top of the atmosphere in the optically thick limit,
and hence the stratosphere could remain optically thin. The full problem will be taken up in detail
in Chapter 7.

4.3.3 A first look at the runaway greenhouse

We have seen in Chapter 2 that the mass of an atmosphere in equilibrium with a reservoir of
condensed substance (e.g. a water ocean) is not fixed. It increases with temperature in accordance
with the dictates of the Clausius-Clapeyron relation. If the condensible substance is a greenhouse
gas, then the optical thickness τ∞ increases with temperature. This tends to reduce the OLR,
offsetting or even reversing the tendency of rising temperature to increase the OLR. What are
the implications of this for the dependence of OLR on surface temperature, and for planetary
energy balance? The resulting phenomena are most commonly thought about in connection with
the effects of a water ocean on evolution of a planet’s climate, but the concept generalizes to any
condensible greenhouse gas in equilibrium with a large condensed reservoir. We’ll take a first look
at this problem here, in the context of the grey-gas model.

In the general case, we’d like to consider an atmosphere in which the condensible greenhouse
gas is mixed with a noncondensible background of fixed mass (which may also have a greenhouse
effect of its own). This is the case for water vapor in the Earth’s atmosphere, for methane on
Titan, and probably also for water vapor in the early atmosphere of Venus. It could also have
been the case for mixed nitrogen-CO2 atmospheres on Early Mars, with CO2 playing the role of
the condensible component. We will eventually take up such atmospheres, but the difficulty in
computing the moist adiabat for a two-component atmosphere introduces some distractions which
get in the way of grasping the key phenomena. Hence, we’ll start with the simpler case in which the
atmosphere consists of a pure condensible component in equilibrium with a reservoir (an ”ocean,”
or perhaps a glacier). In this case, the saturated moist adiabat is given by the simple analytic
formula Eq. 2.24, obtained by solving the simplified form of the Clausius-Clapeyron relation for
temperature in terms of pressure. We’ve already seen in Chapter 2 that a mixed atmosphere is
dominated by the condensible component at large temperatures, so if we are primarily interested
in the large-temperature behavior, the use of the one-component condensible atmosphere is not at
all a bad approximation.

We write T (p) = To/(1 − RTo

L ln p
po

), where (po, To) are a fixed reference temperature and
pressure on the saturation curve, such as the triple point temperature and pressure. If the surface
pressure is ps, then the surface temperature is Ts = T (ps). Hence, specifying surface pressure is
equivalent to specifying surface temperature in this problem. To keep the algebra simple, we’ll
assume a constant specific absorption κ. Then τ∞ = κps/g, which increases as Ts is made larger.
Further, for constant specific absorption, p/po = (τ∞ − τ ′)/τo where τo = κpo/g. Now, the choice
of the reference temperature and pressure (po, To) is perfectly arbitrary, and we’ll get the same
answer now matter what choice we make (within the accuracy of the approximate form of Clausius-
Clapeyron we are using). Hence, we are free to set po = g/κ so that τo = 1. To then implicitly
depends on κ, and becomes larger as κ gets smaller. To is the temperature at the level of the
atmosphere where the optical depth measured relative to the top of the atmosphere is unity.

Substituting the one-component T (p) into the integral giving the solution to the Schwarzschild
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equation, and substituting for pressure in terms of optical thickness, we find

OLR = I+(0)e−τ∞ +
∫ τ∞

0

σ
T 4

o

(1− RTo

L ln p
po

)4
e−(τ∞−τ ′)dτ ′

= I+(0)e−τ∞ + σT 4
o

∫ τ∞

0

1
(1− RTo

L ln τ1)4
e−τ1dτ1

(4.38)

where we have in the second line defined a new dummy variable τ1 = τ∞ − τ ′ as before. The
surface temperature enters the expression for OLR only through τ∞, which is proportional to
surface pressure. In the optically thin limit, the integral on the right hand side of the expression is
small (because τ∞ is small). This happens at low surface temperatures, because ps is small when
the surface temperature is small. The OLR then reduces to the first term, which is approximately
I+(0),i.e. the unmodified upward radiation from the surface. In the optically thick limit, which
occurs for high surface temperatures, the term proportional to I+(0) is negligible, and the second
term dominates. This term consists of the flux σT 4

o multiplied by a non-dimensional integral. Recall
that To is a constant dependent on the thermodynamic and infrared optical properties of the gas
making up the atmosphere; it does not change with surface temperature. Because of the decaying
exponential in the integrand, the integral is dominated by the contribution from the vicinity of
τ1 = 0, and will therefore become independent of τ∞ for large τ∞

1. In the optically thick (high
temperature) limit, then, the integral is a function of RTo/L alone. From this we conclude that the
OLR becomes independent of surface temperature in the limit of large surface temperature (and
hence large τ∞). This limiting OLR is known as the Kombayashi-Ingersoll limit. It was originally
studied in connection with the long-term history of water on Venus, using a somewhat different
argument than we have presented here. We shall use the term to refer to a limiting OLR arising
from the evaporation of any volatile greenhouse gas reservoir, whether computed using a grey gas
model or a more realistic radiation model.

It is readily verified that the integral multiplying σT 4
o approaches unity as RTo/L approaches

zero. In fact, for typical atmospheric gases L/R is a very large temperature, on the order of several
thousand Kelvins. Hence, unless the specific absorption is exceedingly small, RTo/L tends to be
small, typically on the order of .1 or less. For RTo/L = .1, the integral has the value of .905. Thus,
the limiting OLR is essentially σT 4

o . Recalling that To is the temperature of the moist adiabat at
one optical depth unit down from the top of the atmosphere, we see that the limiting OLR behaves
very nearly as if all the longwave radiation were emitted from a layer one optical depth unit from
the top of the atmosphere.

Figure 4.3 shows some results from a numerical evaluation of the integral in Eq. 4.38.
For small surface temperatures, there is little atmosphere, and the OLR increases like σT 4

s . As
the surface temperature is made larger, the atmosphere becomes thicker and the OLR eventually
asymptotes to a limiting value, as predicted. In accordance with the argument given above, the
limiting OLR should be slightly less than the blackbody flux corresponding to the temperature To

found one optical depth down from the top of the atmosphere. This temperature depends on g/κ,
which is the pressure one optical depth down from the top. For g/κ = 100Pa, solving the simplified
Clausius-Clapeyron relation for T at 100Pa yields T0 = 250.3K, whence σT 4

o = 222.6W/m2; for
g/κ = 1000Pa, To = 280.1K and σT 4

o = 349.0W/m2. These values are consistent with the
numerical results shown in the graph.

Note that for a given atmospheric composition (which determines κ) the Kombayashi-
Ingersoll limit depends on the acceleration of gravity. A planet with stronger surface gravity will

1Technically, the integral diverges at extremely large τ∞, because the denominator of the integrand can vanish.
This is an artifact of assuming a constant latent heat and has no physical significance.
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Figure 4.3: OLR vs surface temperature for a one-component grey gas condensible atmosphere
in equilibrium with a reservoir. Calculations were done for thermodynamic parameters L and R
corresponding to water vapor. Results are shown for two different values of g/κ, where κ is the
specific cross section of the gas and g is the acceleration of gravity.

have a higher Kombayashi-Ingersoll limit than one with weaker gravity. An explicit formula for the
dependence on g/κ is obtained by substituting for To using the formula for the single-component
saturated adiabat, Eq. 2.24. Thus, the limiting OLR can be written in the form

OLR∞ = A(L/R)σT 4
o = A(L/R)

σ(L/R)4

ln(κp∗/g)4
(4.39)

where A(L/R) is the order unity constant discussed previously and p∗ = pref exp(L/RTref ). In
the formula for p∗, (pref , Tref ) is any point on the saturation vapor pressure curve, for example the
triple point temperature and pressure. p∗ is an enormous pressure (2.3 · 1011Pa for water vapor),
so Eq. 4.39 predicts that the Kombayashi-Ingersoll limit increases as surface gravity increases,
since increasing g makes the logarithm in the denominator smaller. The apparent singularity when
κp∗/g = 1 is spurious, as the approximations we have made break down long before that value is
reached.

We are now prepared to describe the runaway greenhouse phenomenon. Let S be the
absorbed solar radiation per unit surface area of the planet, and let the limiting OLR computed
above be OLRmax. If S < OLRmax the planet will come to equilibrium in the usual way, warming
up until it loses energy by infrared radiation at the same rate as it receives energy from its star.
But what happens if S > OLRmax ? In this case, as long as there is still an ocean or other
condensed reservoir to feed mass into the atmosphere, the planet cannot get rid of all the solar
energy it receives no matter how much it warms up; hence the planet continues to warm until the
surface temperature becomes so large that the entire ocean has evaporated into the atmosphere.
The temperature at this point depends on the mass and composition of the volatile reservoir. For
example, the Earth’s oceans contain enough mass to raise the surface pressure to about 100bars
if dumped into the atmosphere in the form of water vapor. The ocean has been exhausted when
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Figure 4.4: Schematic picture of the termination of a runaway greenhouse upon depletion of the
volatile reservoir.

the saturation vapor pressure reaches this value. Using the simplified exponential form of the
Clausius-Clapeyron relation to extrapolate the vapor pressure from the sea level boiling point (1
bar at 373.15K), we estimate that this vapor pressure is attained at a surface temperature of about
550K. This estimate is inaccurate, because the latent heat of vaporization varies appreciably over
the range of temperatures involved. A more exact value based on measurements of properties of
steam is 584K, but the grim implications for survival or emergence of life as we know it are largely
the same.

At temperatures larger than that at which the ocean is depleted, the mass of the atmo-
sphere becomes fixed and no longer increases with temperature. The greenhouse gas content of
the atmosphere – which in the present case is the entire atmosphere – no longer increases with
temperature. As a result, the OLR is once more free to increase as the surface becomes warmer,
and the planet will warm up until it reaches an equilibrium at a temperature warmer than that
at which the ocean is depleted. The additional warming required depends on the gap between the
Kombayashi-Ingersoll limit and the absorbed solar radiation. This situation is depicted schemat-
ically in Figure 4.4. Once the ocean is gone, the lower atmosphere is unsaturated and air can be
lifted some distance before condensation occurs. The resulting atmospheric profile is on the dry
adiabat in the lower atmosphere, transitioning to the moist adiabat at the altitude where con-
densation starts. The situation is identical to that depicted for CO2 in Fig. 2.6. Rain will still
form in the condensing layer. Much of it will evaporate in the lower noncondensing layer; some
of it may reach the ground, but the resulting puddles would tend to rapidly evaporate back into
the highly undersaturated lower atmosphere. As surface temperature is made larger, the altitude
where condensation sets in moves higher, until at very large temperatures the atmosphere behaves
like a noncondensing dry system (albeit one where the entire atmosphere may consist of water
vapor).

The runaway greenhouse phenomenon may explain how Venus wound up with such a radi-
cally different climate from Earth, despite having started out in a rather similar state. The standard
story goes something like this: Venus started with an ocean, and with most of it’s CO2 bound up
in rocks as is the case for Earth. However, it was just enough closer to the Sun to trigger a runaway
greenhouse. Once the entire ocean had evaporated into the atmosphere, there was so much water
vapor in the upper atmosphere that it could be broken apart by energetic solar ultraviolet rays,
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whereafter the light hydrogen could escape to space. The highly reactive oxygen left behind would
react to form minerals at the surface. Once there was no more liquid water in play, the reactions
that bind up carbon dioxide in rocks could no longer take place (as will be explained in Chapter
9), so all the planet’s CO2 outgassed from volcanism and stayed in the atmosphere, leading to the
hot, dry super-dense atmosphere of modern Venus.

Assuming habitability to require a reservoir of liquid water, the Kombayashi-Ingersoll limit
for water determines the inner orbital limit for habitability, since if the Solar constant exceeds the
limiting flux a runaway will ensue and any initial ocean will not persist. It also determines how long
it takes before the planet’s Sun gets bright enough to trigger a runaway, and thus sets the lifetime
of a water-dependent biosphere (Earth’s included). Accurate calculations of the Kombayashi-
Ingersoll limit are therefore of critical importance to understanding the limits of habitability both
in time and orbital position. The grey gas model is not good enough to determine the value of
po appropriate to a given gas, and so cannot be used for accurate evaluations of the runaway
greenhouse threshold. We can at least say that, all other things being equal, a planet with larger
surface gravity will be less susceptible to the runaway greenhouse. This is so because po = g/κ,
whence larger g implies larger po, which implies in turn larger T (po) and hence a larger limiting
OLR. This observation may be relevant to the class of extrasolar planets known as ”Large Earths.”

We will revisit the runaway greenhouse using more realistic radiation physics in Section 4.7.
The effects of the stratosphere and of clouds will be brought into the picture in Chapter 7.

The runaway greenhouse phenomenon is usually thought of in conjunction with water vapor,
but the concept applies equally well to any situation where there is a volatile reservoir of greenhouse
gas, whether it be in solid or liquid form. For example, one could have a runawy greenhouse in
association with the sublimation of a large CO2 ice cap, or in association with the evaporation
of a Methane or Ammonia ocean. In fact, the Kombayashi-Ingersoll limit determines whether a
planet would develop a reservoir of condensed substance at its surface (a glacier or ocean), given
sustained outgassing of that substance in the absence of any chemical sink. As the gas builds up
in the atmosphere, the pressure increases and it would eventually tend to condense at the surface,
preventig any further gaseous accumulation. However, the greenhouse effect of the gas warms
the surface,which increases the saturation vapor pressure. The Kombayashi-Ingersoll limit tells
us which effect wins out as surface pressure increases. Earth is below the threshold for water, so
we have a water ocean. Venus is above the threshold for water and CO2, so both accumulate as
gases in the atmosphere (apart from possible escape to space). When we revisit the problem with
real-gas radiation, we will be able to say whether CO2 would form a condensed reservoir on Earth
or Mars, or CH4 on Titan, given sustained outgassing in the absence of a chemical sink.

4.3.4 Pure radiative equilibrium for a grey gas atmosphere

For the temperature profiles discussed in Sections 4.3.2 and 4.3.3, the net infrared radiative heating
computed from Eq. 4.14 is nonzero at virtually all altitudes; generally the imbalance acts to cool
the lower atmosphere and warm the upper atmosphere. In using such solutions to compute OLR
and back-radiation, we are presuming that convective heat fluxes will balance the cooling and keep
the troposphere in a steady state. The upper atmosphere will continue to heat, and ultimately
reach equilibrium creating a stratosphere, but in the all-troposphere idealization we presume that
the stratosphere is optically thin enough that it doesn’t much affect the OLR.

Now, we’ll investigate solutions for which, in contrast, the net radiative heating vanishes
individually at each altitude. Such solutions are in pure radiative equilibrium, as apposed to
radiative-convective equilibrium. First we’ll consider the case in which the only radiative heating
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is supplied by infrared; later we’ll bring heating by atmospheric solar absorption into the picture.
Pure radiative equilibrium is the opposite extreme from the all-troposphere idealization, and tells
us much about the nature of the stratosphere, and the factors governing the tropopause height.

Assuming the atmosphere to be transparent to solar radiation, pure radiative equilibrium
requires that the frequency-integrated longwave radiative heating H vanish for all τ . From the grey
gas version of Eq. 4.14, we then conclude that I+ − I− is independent of τ . Applying the upper
boundary condition, we find that this constant is I+(τ∞), which is the OLR. Now, by taking the
difference between the equations for I+ and I− we find

0 =
d

dτ
(I+ − I−) = −(I+ + I−) + 2σT 4 (4.40)

which gives us the temperature in terms of (I+ + I−). Next, taking the sum of the equations for
I+ and I− yields

d

dτ
(I+ + I−) = −(I+ − I−) (4.41)

This is easily solved by noting that −(I+ − I−) = const = −OLR. In consequence,

2σT 4 = (I+ + I−) = (1 + τ∞ − τ)OLR (4.42)

where we have again used the boundary condition at τ∞. This expression gives us the pure
radiative equilibrium temperature profile T (τ). In pure radiative equilibrium, the temperature
always approaches the skin temperature at the top of the atmosphere, where τ = τ∞. This
recovers the result obtained in the previous chapter, in Section 3.6. When the atmosphere is
optically thin, τ∞ − τ is small throughout the atmosphere, and the entire atmosphere becomes
isothermal with temperature equal to the skin temperature. When the atmosphere is not optically
thin, the temperature decreases gently with height, approaching the skin temperature as the top
of the atmosphere is approached.

Eq. 4.42 also gives us the upward and downward fluxes, since we now know both I+ − I−
and I+ + I− at each τ . In particular, the downward flux into the ground is

I−(0) =
1
2
((I+ + I−)− (I+ − I−)) =

1
2
((1 + τ∞)OLR−OLR) =

1
2
τ∞OLR (4.43)

For an optically thin atmosphere, the longwave radiation returned to the ground by the atmosphere
is only a small fraction of that emitted to space. As the atmosphere becomes optically thick, the
radiation returned to the ground becomes much greater than that emitted to space, because the
radiative equilibrium temperature near the ground becomes large and the optical thickness implies
that the radiation into the ground is determined primarily by the low level temperature. If we
assume the planet to be in radiative equilibrium with the absorbed solar radiation (1−α)S, where
α is the albedo of the ground, then OLR = (1−α)S and the radiative energy budget of the ground
is

σT 4
s = (1− α)S + I−(0) = (1− α)S · (1 +

1
2
τ∞) (4.44)

where Ts is the surface temperature. This, together with the temperature profile determined by Eq.
4.42, determines what the thermal state of the system would be in the absence of heat transport
mechanisms other than radiation. For an optically thin atmosphere, the surface temperature is
only slightly greater than the no-atmosphere value. As τ∞ becomes large, the surface temperature
increases without bound. Note that, while this formula yields a greenhouse warming of the surface,
the relation between surface temperature and τ∞ is different from that given by the all-troposphere
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radiative convective calculation in Eq. 4.35, because the pure radiative equilibrium temperature
profile is different from the adiabat which would be established by convection.

Let’s now compare the surface temperature with the temperature of the air in immediate
contact with the surface. From Eq. 4.42 we find that the low level air temperature is determined
by σT (0)4 = (1− α)S · ( 1

2 + 1
2τ∞) Taking the ratio,

T (0)
Ts

= (
1
2 + 1

2τ∞

1 + 1
2τ∞

)1/4 (4.45)

Thus, the surface is always warmer than the overlying air in immediate contact with it. In the
previous chapter, we saw that this was the case for pure radiative equilibrium in an optically
thin atmosphere, but now we have generalized it ot arbitrary optical thickness. In the optically
thin limit, the formula reduces to our earlier result, T (0) = 2−1/4Ts. In the optically thick limit,
Ts − T (0) = 1

4Ts/τ∞, whence the temperature jump (relative to surface temperature) falls to zero
as the atmosphere is made more optically thick. As we already discussed in Section 3.6, cold air
immediately above a warmer surface constitutes a very unstable situation. Under the action of
diffusive or turbulent heat transfer between the surface and the nearby air, a layer of air near the
surface will heat up to the temperature of the surface, whereafter it will be warmer than the air
above it. Being buoyant, it will rise and lead to convection, which will stir up some depth of the
atmosphere and establish an adiabat – creating a troposphere.

In pure radiative equilibrium, the surface heating inevitably gives rise to convection. How-
ever, it is also possible that the temperature profile in the interior of the atmosphere may become
unstable to convection, even without the benefit of a surface. This is a particularly important
possibility to consider for gas giant planets, which have no distinct surface to absorb solar radia-
tion and stimulate convection. To determine stability, we must compute the lapse rate dT/dp in
radiative equilibrium, and see if it is steeper than that of the adiabat (moist or dry) appropriate
to the atmosphere. Taking the derivative of 4.42 with respect to optical thickness, we find

8σT 3 dT

dτ
= −OLR (4.46)

whence, using d/dp = (dτ/dp)(d/dτ), we find

d lnT

d ln p
= −1

4
1

(1 + τ∞ − τ)
p
dτ

dp
(4.47)

Stability is determined by comparing the slope of the adiabat to the radiative-equilibrium slope
we have just computed. For the dry adiabat, the atmosphere is stable where

R

cp
≥ −1

4
p
dτ

dp

1
(1 + τ∞ − τ)

(4.48)

The factor p appearing on the right hand side of this equation guarantees that the upper portion
of the atmosphere will always be stable, unless dτ/dp blows up like 1/p or faster as p → 0.
Moreover, optically thin atmospheres are always stable throughout the depth of the atmosphere.
This is so because the denominator is close to unity in the optically thin limit, while −pdτ/dp =
κp/(g cos ¯theta) < τ∞ � 1. Since optically thin atmospheres are nearly isothermal in pure radiative
equilibrium, it is hardly surprising that they are statically stable.

In the case of constant absorption coefficient κ, we have pdτ/dp = −κp/g cos θ̄, which is just
τ − τ∞. Thus, the stability condition becomes

R

cp
≥ 1

4
τ∞ − τ

(1 + τ∞ − τ)
(4.49)
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The right hand side has its maximum at the ground τ = 0, and the maximum value is 1
4τ∞/(1+τ∞).

The more optically thick the atmosphere is, the more unstable it is near the ground. For large
optical thickness, the stability criterion becomes the remarkably simple statement 4R/cp ≥ 1. Dry
Earth air, with R/cp = 2/7, just misses being unstable by this criterion, and pure noncondensing
water vapor is almost precisely on the boundary. Pure noncondensing CO2, NH3 and CH4 just
barely satisfy the condition for instability near the ground when the atmosphere is optically thick.

Typical atmospheres, however, will be more unstable than the constant κ calculation sug-
gests. As will be explained in Section 4.4 ,collisional broadening typically causes the absorption
coefficient to increase linearly with pressure, out to pressures of several bars. With collisional
broadening, κ(p) = κ(ps) · (p/ps) for a combination of well-mixed greenhouse gases with pressure-
independent concentrations. In this case −pdτ/dp = 2τ∞ at the surface, so that the dry adiabatic
stability condition in the optically thick limit becomes 2R/cp ≥ 1. The extra factor of 2 compared
to the case without pressure broadening destabilizes all well-mixed atmospheres, provided they
are sufficiently optically thick near the ground. The maximum value of the stability parameter
occurs for mono-atomic gases like Helium, which has 2R/cp = .8 and easily meets the criterion for
instability.

Other processes can destabilize the atmosphere as well. For example, on the moist adiabat
the slope −d lnT/d ln p is always less than the dry adiabatic slope, which deepens the layer within
which the radiative-equilibrium atmosphere is unstable. In addition, a sharp decrease of optical
thickness with height tends to destabilize the atmosphere, particularly if it occurs in a place where
the atmosphere is optically thick. This happens whenever there is a layer where the concentra-
tion of absorbers decreases strongly with height. Because of Clausius-Clapeyron, this situation
often happens in the lower portions of atmospheres in equilibrium with a reservoir of condensible
greenhouse gas (water vapor on Earth or Methane on Titan, for example). In this case, the con-
densible substance has a destabilizing effect through its influence on the radiative equilibrium, as
well as through its effect on the adiabat. Condensed water is a good infrared absorber, so radiative
equilibrium drives cloud tops to be unstable. In contrast, the atmosphere is stabilized where the
absorber concentration increases strongly with height; this situation is less typical, but can happen
at the bottom of a water cloud.

4.3.5 Effect of atmospheric solar absorption on pure radiative equilib-
rium

Now we will examine how the absorption of solar radiation within an atmosphere affects the
temperature structure of the atmosphere in radiative equilibrium. The prime application of this
calculation is to understand the thermal structure of stratospheres. Under what circumstances
does the temperature of a stratosphere increase with height? The effect of solar absorption on gas
giant planets like Jupiter is even more crucial. There being no distinct surface to absorb sunlight,
all solar driving of the atmosphere for gas giants comes from deposition of solar energy within the
atmosphere. In this case, the profile of absorption determines in large measure where, if anywhere,
the radiative equilibrium atmosphere is unstable to convection, and therefore where a troposphere
will tend to form. The answer determines whether convection on gas giants is driven in part by
solar heating as opposed to ascent of buoyant plumes carrying heat from deep in the interior of
the planet.

In the Earth’s stratosphere, solar absorption is largely due to the absorption of ultraviolet by
ozone. On Earth as well as other planets having appreciable water in their atmospheres, absorption
of solar near-infrared by water vapor and water clouds is important. CO2 also has significant near-
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infrared absorption, which is relatively unimportant at present-day CO2 concentrations on Earth,
but becomes significant on the Early Earth when CO2 concentrations were much higher; solar
near-infrared absorption by CO2 is of course important in the CO2 dominated atmospheres of
Mars (present and past) and Venus. Solar absorption by dust is important to the Martian thermal
structure throughout the depth of the atmosphere. On Titan, it is solar absorption by organic haze
clouds that control the thermal structure of the upper atmosphere. Solar absorption is also crucial
to the understanding of the influence of greenhouse gases like CH4 and SO2, which strongly absorb
sunlight in addition to being radiatively active in the thermal infrared. Strong solar absorption
also would occur in the high-altitude dust and soot cloud that would be lofted in the wake of a
global thermonuclear war or asteroid impact (the ”Nuclear Winter” problem).

Since the Schwartzschild equations in this chapter are used to describe the infrared flux
alone, the addition of solar heating does not change these equations. The heating due to solar
absorption only alters the condition for local equilibrium, which now involves the deposition of
solar as well as infrared flux. We write the solar heating rate per unit optical depth in the form
Q� = dF�/dτ , where F� is the net downward solar flux as a function of infrared optical depth. At
the top of the atmosphere, F� = (1 − α)S, where α is the planetary albedo – that is, the albedo
measured at the top of the atmosphere. Since atmospheres at typical planetary temperatures do
not emit significantly in the solar spectrum, there is no internal source of solar flux and therefore
F� must decrease monotonically going from the top of the atmosphere to the ground.

The net radiative heating at a given position is now the sum of the infrared and solar term,
i.e.

− d

dτ
(I+ − I−) +

d

dτ
F� = 0 (4.50)

Integrating this equation and requiring that the top of atmosphere energy budget be in balance
with the local absorbed solar radiation, we find

(I+ − I−)− F� = 0 (4.51)

At the top of the atmosphere, this reduces to OLR − (1 − α)S = 0, which is the requirement
for top of atmosphere energy balance. Because the solar absorption does not change the infrared
Schwartzschild equations, Eq. 4.41 is unchanged from the case of pure radiative equiibrium without
solar absorption. Substituting Eq 4.51 and integrating, we obtain

I+ + I− =
∫ τ∞

τ

F�(τ ′)dτ ′ + (1− α)S (4.52)

In writing this expression we have made use of the boundary condition I+− I− = OLR = (1−α)S
at the top of the atmosphere. The heat balance equation 4.40 needs to be slightly modified, since
the infrared cooling now balances the solar heating, instead of being set to zero. Thus,

d

dτ
F� =

d

dτ
(I+ − I−) = −(I+ + I−) + 2σT 4 (4.53)

from which we infer
2σT 4 =

d

dτ
F� +

∫ τ∞

τ

F�(τ ′)dτ ′ + (1− α)S (4.54)

This gives the vertical profile of temperature in terms of the vertical profile of the solar flux; the
previous case (without solar absorption) can be recovered by setting F� = const = (1 − α)S.
At the top of the atmosphere, the integral in Eq. 4.53 vanishes, and the temperature becomes
identical to the temperature of a skin layer heated by solar absorption, derived in Chapter 3 (Eq.
3.27).
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Taking the derivative with respect to τ yields

d

dτ
2σT 4 =

d2

dτ2
F� − F� (4.55)

This equation provides a simple criterion determining when the solar absorption causes the tem-
perature to increase with height. When there is no absorption, F� is a constant and since it

is positive the temperature decreases with height. The quantity
√
|F−1
� d2F�/dτ2| is local solar

flux decay rate, expressed in units of infrared optical depth. Where the local solar decay rate is
less than unity – meaning solar flux is attenuated at a lower rate than infrared – the radiative
equilibrium temperature decreases with height. Where the local solar decay rate is greater than
unity, the temperature increases with height. Note that it is the solar extinction rate relative
to the infrared extinction rate that counts. One can make the temperature increase with height
either by increasing the solar opacity or decreasing the infrared opacity (generally by decreasing
the greenhouse gas concentration). The profile of solar absorption is also sensitive to the vertical
distribution of solar absorbers. Where solar absorbers increases sharply with height, as is the case
for ozone on Earth or organic haze on Titan, the stratospheric temperature increases with height.

By way of illustration, let’s suppose that the net downward solar flux decays exponentially
as it penetrates the atmosphere. Specifically, let F� = (1 − α)S exp(−(τ∞ − τ)/τS), where τS

is a constant. τS is the decay rate of solar radiation, measured in infrared optical depth units.
When τS is large, solar absorption is weak compared to infrared absorption, and one must go a
great distance before the solar beam is appreciably attenuated. Conversely, when τS is small, solar
absorption is strong and the solar beam decays to zero over a distance so short that infrared is
hardly attenuated at all. With the assumed form of the solar flux, the temperature profile is given
by

2
σT 4

(1− α)S
= 1 + τS + (

1
τS
− τS)e−(τ∞−τ)/τS (4.56)

If τS > 1 the temperature decreases with height, and if τS < 1 the temperature increases with
height. Defining the skin temperature as Tskin ≡ ( 1

2σ (1−α)S))1/4 the temperature at the top of the
atmosphere is (1+1/τS)Tskin, which reduces to the skin temperature when τS is large and becomes
much greater than the skin temperature when τS is small. If the atmosphere is deep enough that
essentially all solar radiation is absorbed before reaching the ground, then the exponential term
vanishes in the deep atmosphere and the deep atmosphere becomes isothermal with temperature
(1 + τS)Tskin. Thus, when τS is small, all the solar radiation is absorbed within a thin layer near
the top of the atmosphere. The temperature increases rapidly with height in this layer, but the
bulk of the atmosphere below is approximately isothermal at the skin temperature. The strong
solar absorption causes the deep atmosphere, and the ground (if there is one) , to be colder than
it would have been in the absence of an atmosphere. This anti-greenhouse effect arises because
the deep atmosphere is heated only by downwelling infrared emitted by the solar-absorbing layer.
This downward radiation equals the upward radiation loss to space, which must equal (1−α)S to
satisfy the top of atmosphere balance. The deep atmosphere falls to the skin temperature because
it is being illuminated by this flux from one side, but is radiating from both its top and bottom.
This limit is relevant to the nuclear winter phenomenon, in which energetic explosions and fires loft
a global or hemispheric solar-absorbing soot and dust cloud to high altitudes. The same situation
would occur in the aftermath of a large bolide (asteroid or comet) impact. In either case, the
atmosphere below the soot layer would become as frigid as the depth of winter, but moreover the
relaxation to a uniform temperature state would shut off the convection which in large measure
drives the hydrological cycle.

It can happen that the atmosphere is deep enough to absorb all solar radiation before it
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reaches the ground, even if the rate of solar absorption is weak and τS >> 1. This would happen
if the atmosphere is so optically thick in the infrared that τ/infty/τS >> 1 despite τS being large.
In this case, the deep atmosphere is still isothermal, but it becomes much hotter than the skin
temperature – indeed it becomes hotter without bound as τS is made larger. In this case, it is the
top of the atmosphere which equilibrates at the relatively cold skin temperature, while the deep
atmosphere exhibits a strong greenhouse effect. Because the deep atmosphere is isothermal, it is
stable and will not generate a troposphere.

The solution given in Eq. 4.56 shows that one can account for the temperature increase
in the Earth’s stratosphere if the upper atmosphere strongly absorbs solar radiation. As a model
of the Earth’s atmosphere, however, it has the shortcoming that if one makes the stratospheric
absorption strong enough to yield a temperature increase with height, essentially all the solar beam
is depleted in the stratosphere, leaving an isothermal lower atmosphere that won’t convect and
create a troposphere. What happens in Earth’s real stratosphere is that ozone is a good absorber
only in the ultraviolet part of the Solar spectrum. Once the ultraviolet is depleted, the remaining
flux making its way into the lower atmosphere is only weakly absorbed by the atmosphere. In terms

of Eq. 4.55, the solar decay rate
√
|F−1
� d2F�/dτ2| is large in the upper atmosphere, where there

is still plenty of ultraviolet to absorb; in consequence, the temperature increases with height there.
In the lower atmosphere the solar decay rate becomes small, so that the radiative equilibrium
temperature decreases with height. There is also plenty of solar radiation left to heat the ground,
destabilize the atmosphere, and create a troposphere. A variant of the solution Eq. 4.56 which
captures this behavior is explored in Problem ??.

The solution in Eq. 4.56 also explains why human-caused increases in CO2 over the past
century have led to tropospheric warming but stratospheric cooling, as illustrated in Figure 1.17.
Increasing the greenhouse gas concentration is equivalent to increasing τ∞. If one plots temperature
as a function of pressure for a sequence of increasing τ∞, the phenomenon is immediately apparent
in cases where the upper level solar absorption is sufficiently strong. The behavior is explored in
Problems ?? and ??. Without solar absorption, increasing τ∞ warms the atmosphere at every
level, though the amount of warming decreases with height as the temperature asymptotes to the
skin temperature. With solar absorption, however, the increased infrared cooling of the upper
atmosphere offsets more and more of the warming due to solar absorption, leading to a cooling
there. In the real atmosphere convection modifies the temperature profile in the lower atmosphere.
Further, one must take into account real gas infrared and solar absorption in order to quantitatively
account for the observed temperature trends. Nonetheless, the grey-gas pure radiative equilibrium
calculation captures the essence of the mechanism.

The general lesson to take away from this discussion is that solar absorption near the top
of the atmosphere stabilizes the atmosphere, reduces the greenhouse effect, and cools the lower
portion of the atmosphere and also the ground. This is important in limiting the effectiveness
of greenhouse gases like CH4 and SO2, which significantly absorb solar radiation when their
concentration becomes very high. It is also the way high altitude solar-absorbing haze clouds on
Titan and perhaps Early Earth act to cool the troposphere. The soot and dust clouds lofted by
an asteroid impact act similarly. In contrast, solar absorption concentrated near the ground has
an effect which is not much different from simply reducing the albedo of the ground itself.
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4.4 Real gas radiation: Basic principles

4.4.1 Overview: OLR through thick and thin

It would be exceedingly bad news for planetary habitability if real greenhouse gases were grey
gases (see Exercise 4.3.1). Greenhouse gas concentrations would have to be tuned exceedingly
accurately to maintain a planet in a habitable temperature range, and there would be little margin
for error. Thus, it is of central importance that, for real gases, OLR varies much more gradually
with greenhouse gas concentration than it would for an idealized grey gas 2. This is another area in
which the quantum nature of the Universe directly intervenes in macroscopic phenomena governing
planetary climate.

Infrared Radiative transfer is a very deep and complex subject, and mastery of the material
in this section will still not leave the reader prepared to write state-of-the-art radiation codes. Nor
will we cover the myriad engineering tricks large and small which are needed to make a radiation
code fast enough to embed in a general circulation model, where it will need to be invoked a dozen
times per model day at each of several thousand grid points. We do aspire to provide enough of the
basic physics to allow the student to understand why OLR is less sensitive to the concentration of
a typical real gas than to a grey gas, and to help the student develop some intuition about the full
possible range of behaviors of greenhouse gases on Earth and other planets, now and in the distant
past or future. Such an understanding should extend even to greenhouse gases that are not at
present commonly considered in the context of climate, or implemented in standard ”off the shelf”
radiation models. What would you do, for example, if you found yourself wondering whether SO2

or H2S significantly affected the climate of Early Earth or Mars? The grey gas model does not
provide an adequate first attack on such problems. We thus aspire to provide enough of the basic
algorithmic equipment to allow the student to build simplified radiative models from scratch, that
get the OLR and infrared heating profiles roughly correct.

Even though we will have recourse to a ”professionally” written radiation code in Section
4.5, we’d like to at least draw back the curtain a little bit, so that the reader will not be left with
the all-too-common notion that radiation routines are black boxes, the internal workings of which
can only be understood by the high priesthood of radiative transfer. Hopefully, this will also open
the door to entice more people into innovative work on the subject.

Since the main point is to understand how the wavenumber dependence of absorptivity af-
fects the sensitivity of OLR to greenhouse gas concentration, we’ll begin with a discussion of the
spectrum of outgoing longwave radiation in an idealized case. Let’s consider a planet whose surface
radiates like an ideal blackbody in the infrared, having an atmosphere whose air temperature at
the surface Tsa is equal to the ground temperature Tg. The temperature T (p) is monotonically de-
creasing with height in the troposphere, and is patched continuously to an isothermal stratosphere
having temperature Tstrat. The atmosphere consists mostly of infrared-transparent N2 and O2

with a surface pressure of 105Pa, like Earth. Unlike Earth, the only greenhouse gas is a mythical
substance (call it Oobleck), which is a bit like CO2, but much simpler to think about. It has
the same molecular weight as CO2, but it’s absorption coefficient κOob(ν) has an absorption band
centered on wavenumber νo = 600cm−1. Within 100cm−1 of νo, κOob has the constant value κo.
Outside of this limited range of wavenumbers, Oobleck is transparent to infrared, i.e. κOob = 0.
To make life even simpler for the atmospheric physicists of this planet, κOob is independent of both
temperature and pressure. Like real CO2, the specific concentration of Oobleck (qOob) is constant

2Lest there be any misunderstanding, we must emphasize at this point that ”less sensitive” does not mean
”insensitive.” If CO2 were a grey gas, then doubling it’s concentration, as we are poised to do within the century,
would be unquestionably lethal. Because CO2 is not in fact a grey gas, the results may be merely catastrophic.
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Figure 4.5: The OLR spectrum for a hypothetical gas which has a piecewise constant absorption
coefficient. The dashed-dotted lower curve is the blackbody spectrum corresponding to the strato-
spheric temperature Tstrat while the dashed upper curve is the blackbody spectrum corresponding
to the surface temperature Ts. The calculation was carried out for Ts = 280K and Tstrat = 200K,
and with a greenhouse gas concentration sufficient to make the optical thickness ≈ 10 in the cen-
tral absorption band. Left panel: The gas has an absorption coefficient of 1m2/kg within a single
absorption band extending from 500 to 700 cm−1. Right Panel: The gas has additional weak ab-
sorption bands from 300 to 500 cm−1 and 700 to 900 cm−1, within which the absorption coefficient
is .125m2/kg.

throughout the depth of the atmosphere.

What does the spectrum of OLR look like for this planet? The answer is shown in the left
panel of Figure 4.5. In this figure, we have assumed that the Oobleck molecule has an absorptivity
of 1m2/kg. Then, with a molar concentration of 300ppmv (like CO2 in the 1960’s), the specific
concentration is 4.6 · 10−4 and the optical thickness κoqOobps/g cos θ̄ is 9.4 within the absorption
band. Since the atmosphere is optically thick in this wavenumber region, infrared radiation in
this part of the spectrum exits the atmosphere with the temperature of the stratosphere. This is
exactly what we see in the graph. Outside the absorption band, the atmosphere is transparent,
and hence infrared leaves the top of the atmosphere at the much higher temperature of the ground.
The overall appearance of the OLR spectrum is that the greenhouse gas has ”dug a ditch” in the
spectrum of OLR, or perhaps ”taken a bite” out of it. The ditch in the spectrum reduces the total
OLR of the planet, but not so much so as if the absorption were strong throughout the spectrum,
as would be the case for a grey gas. This is the typical way that real greenhouse gases work:
they make the atmosphere optically thick in a limited part of the spectrum, while leaving it fairly
transparent elsewhere. The strength of the greenhouse effect is not so much a matter of how deep
the ditch, but how wide.

Oobleck is a very contrived substance, but the above exercise gives us a fair idea of what to
look for when interpreting real observations of the spectrum of OLR. Figure 4.6, giving the OLR
spectrum of Mars observed at two times of day by the TES instrument on Global Surveyor, is a
case in point. Mars has an essentially pure CO2 atmosphere complicated only be optically thin
ice clouds and dust clouds (which can be very thin between major dust storms). The planet thus
provides perhaps the purest illustration of the CO2 radiative effect available in the Solar system.
In Figure 4.6 a CO2 ”ditch” centered on about 650cm−1 is evident both in the afternoon and
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Figure 4.6: Some representative OLR spectra for Mars, observed by the Thermal Emission Spec-
trometer on Mars Global Surveyor at various times of day.

sunset spectra. At the trough of this ditch, the radiation exits the atmosphere with a radiating
temperature of about 170K both in the afternoon and sunset cases. This temperature is similar to
the coldest temperature encountered in the upper atmosphere of Mars in the Summer (see Fig 2.2),
and is compatible with the strong decrease of temperature with height seen in the soundings. Away
from CO2 ditch, the atmosphere appears transparent, and the emission resembles the blackbody
emission from a land surface having temperature 265K in the afternoon case and 212K in the
sunset case. These numbers are compatible with the observed range of ground temperature on
Mars, cross-checked by near-surface data from landers.

In a situation like that shown in the left panel of Figure 4.5, the OLR is as low as it
is going to get, provided the stratospheric temperature is held fixed. Increasing the greenhouse
gas concentration qG cannot lower the OLR further since, in the spectral region where the gas
is radiatively active the atmosphere is already radiating at the coldest available temperature 3.
Suppose, however, that instead of the gas being transparent outside the central absorption band,
there is a set of weaker absorption bands waiting in the wings on either side of the primary band –
a gas we may call ”Two-Band Oobleck.” In this case, illustrated in the right panel of Figure 4.5, the
effect of the weaker bands on OLR is not yet saturated, and increases in qG will cause the OLR to
go down until these bands, too, are saturated. But what if there are yet-weaker absorption bands
waiting a bit farther out? Then further increases of qG will yield additional decreases in the OLR.
One can imagine making the process continuous by making the width of the bands smaller, and the
jump in absorption coefficients between adjacent bands smaller. Real greenhouse gases act very
much like this, as they almost invariably have absorption whose overall strength decays strongly
with distance in wavenumber from a central peak. The rate at which the absorption decays with

3This example is somewhat contrived, since increasing the concentration of a greenhouse gas generally cools the
stratosphere. However, it serves to illustrate the way additional weak absorption bands influence the OLR.The ad-
ditional OLR reduction from cooling of the stratosphere as qG increases is a secondary effect. Since the temperature
there is already so low, it wouldn’t throw off the result very much to simply replace the OLR at the depths of the
ditch to zero.
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distance determines the rate at which the OLR decreases as the greenhouse gas concentration is
made larger.

From Eq. 4.11, 4.12 or 4.13, if we know the transmission function, we can carry out the
integral needed to obtain the radiative fluxes. As we shall see shortly, in most cases the dependence
of κ on wavenumber is so intricate that solving the problem by doing a brute-force integral over
wavenumber is prohibitive if one aims to do the calculation enough times to gain some insight from
modelling a climate (even in a single dimension). In any event, doing the calculation with enough
spectral resolution to directly resolve all the wiggles in κ(ν) provides much more information about
spectral variability than is needed in most cases. What we really want is to understand something
about the properties of the transmission function averaged over a finite sized spectral region of
width ∆, centered on a given frequency ν. Specifically, let’s choose ∆ to be small enough that the
Planck function B and its derivative dB/dT are both approximately constant over the spectral
interval of width ∆. In that case, when the solution for the flux given in Eq. 4.12 or its alternate
forms is averaged over ∆, B can be treated as nearly independent of ν and taken outside the
average. In consequence, the resulting band-averaged equations have precisely the same form as
the original ones, save that the fluxes are replaced by average fluxes like

Ī+(ν, p) =
1
∆

∫ ν+∆/2

ν−∆/2

I+(ν′, p)dν′ (4.57)

and the transmission function is replaced by

T̄ν(p, p′) =
1
∆

∫ ν+∆/2

ν−∆/2

Tν′(p, p′)dν′ (4.58)

We need to learn how to derive properties of T̄ν(p, p′). The essential challenge is that the nonlinear
exponential function stands between the statistics of κν and the statistics of Tν .

The transmission function satisfies the multiplicative property, that

Tν(p1, p2) = Tν(p1, p
′)Tν(p′, p2) (4.59)

if p′ is between p1 and p2. The multiplicative property means that the transmission along a
path through the atmosphere can be obtained by taking the product of the transmissions along
any number of constitutent parts of the path. The band-average transmission loses this valuable
property, because for two general functions f and g,

∫
f(ν)g(ν)dν 6= (

∫
f(ν)dν)(

∫
g(ν)dν). The

equality holds only if the two functions are uncorrelated, which is not generally the case for the
transmission in two successive parts of a path. In the first part of the path, the strongly absorbed
frequencies are used up first, and are no longer available for absorption in the second part of the
path. The system has memory, and one can think of the light as becoming ”tired,” or depleted
more and more in the easily absorbed frequencies the longer it travels, with the result that the
absorption in the latter parts of the path are weaker than they would be if fresh light were being
absorbed.

4.4.2 The absorption spectrum of real gases

We will now take a close look at the absorption properties of CO2, in order to introduce some
general ideas about the nature of the absorption of infrared radiation by molecules in a gas.
Continuing to use CO2 as an example, these ideas will be developed in Sections 4.4.3,4.4.4 and
4.4.6 into a computationally efficient means of calculating infrared fluxes in a real-gas atmosphere.
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A survey of the spectral characteristics of selected other greenhouse gases will be given in Sections
4.4.7 and 4.4.8.

Figure 4.7 shows the absorption coefficient of CO2 as a function of wavenumber, for pure
CO2 gas at a pressure of 1bar and a temperature of 296K. In some spectral regions, e.g. 1700-
1800 cm−1, CO2 at this temperature and pressure is essentially transparent. This is a window
region through which infrared can easily escape to space if no other greenhouse gas intervenes.
For a 285K blackbody, 60W/m2 can be lost through this window. There are two major bands
in which absorption occurs. For Earthlike temperatures, the lower wavenumber band, from about
450 to 1100 cm−1 is by far the most important. At 285K the blackbody emission in this band
is 218W/m2 out of a total of 374W/m2, so the absorption in this band is well tuned to intercept
terrestrial infrared and to thus reduce OLR. The blackbody emission in the higher wavenumber
band, from 1800 to 2500 cm−1, is only 6W/m2. This band has a minor effect on OLR for Earth,
but it can become important for much hotter planets like Venus, and even for Earth is important
for the absorption of solar near-infrared. Within either band, the absorption coefficient varies by
more than eight orders of magnitude.

The absorption does not vary randomly. It is arrange around six peaks (three in each major
band), with the overall envelope of the absorption declining approximately exponentially with
distance from the peak. However, there is a great deal of fine-scale variation within the overall
envelope. Zooming in on a typical region in the inset to Figure 4.7 we see that the absorption can
vary by an order of magnitude over a wavenumber range of only a few tenths of a cm−1. Most
significantly, the absorption peaks sharply at a discrete set of frequencies.

Why does the absorption peak at preferred frequencies? In essence, molecules are like
little radio receivers, tuned to listen to light only at certain specific frequencies. Since energy
is conserved, the absorption or emission of a photon must be accompanied by a change in the
internal energy state of the molecule. It is a consequence of quantum mechanics that the internal
energy of a molecule can only take on values drawn from a finite set of possible energy states, the
distribution of which is determined by the structure of the molecule. If there are N state, there
are N(N − 1)/2 possible transitions, and each one leads to a possible absorption/emission line
as illustrated in Figure 4.8. Transitions between different energy states of a molecule’s electron
configuration do not significantly contribute to infrared absorption in most planetary situations.
The energy states involved in infrared absorption and emission are connected with displacement
of the nuclei in the molecule, and take the form of vibrations or rotations. Every molecule has an
equilibrium configuration, in which each nucleus is placed so that the sum of the electromagnetic
forces from the other nuclei and from the electron cloud sum up to zero. A displacement of the
nuclear positions will result in a restoring force that brings the system back toward equilibrium,
leading to vibrations. The nucleii can be thought of as being connected with quantum-mechanical
springs (one between each pair of nucleii) of different spring constants, and the vibrations can be
thought of as arising from a set of coupled quantum-mechanical oscillators. Rigid molecules, held
together by rigid rods rather than springs, would have rotational states but not vibrational states.
The fact that molecules are not rigid causes the rotational states to couple to the vibrational states,
through the coriolis and centrifugal forces.

Noble gases (He, Ar, etc.) are monatomic, have only electron transitions, and are not
active in the infrared. A diatomic molecule (Fig. 4.9) has a set of energy levels associated with the
oscillation caused by pulling the nuclei apart and allowing them to spring back; it also has a set of
energy levels associated with rotation about either of the axes perpendicular to the line joining the
nuclei. Centrifugal force couples the stretching to the rotation. Triatomic molecules (Fig. 4.10)
have an even richer set of vibrations and rotations, especially if their equilibrium state is bent rather
than linear (Fig. 4.11). Polyatomic molecules like CH4, NH3, SF6 and the chlorofluorcarbons
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Figure 4.7: The absorption coefficient vs. wavenumber for pure CO2 at a temperature of 293K
and pressure of 105Pa. This graph is not the result of a measurement by a single instrument, but
is synthesized from absorption data from a large number of laboratory measurements of spectral
features, supplemented by theoretical calculations. The inset shows the detailed wavenumber
dependence in a selected spectral region.
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Figure 4.9: Vibration and rotation modes of a diatomic molecule made of a pair of identical atmos,
with associated charge distributions

(e.g. CFC-12, which is CCl2F2) have yet more complex modes of vibration and rotation. As the
set of energy states becomes richer and more complex, the set of differences between states fills in
more and more of the spectrum, making the molecule a better infrared absorber.

For a molecule to be a good infrared absorber and emitter, it is not enough that it have
transitions whose energy corresponds to the infrared spectrum. In order for a photon to be absorbed
or emitted, the associated molecular motions must also couple strongly to the electromagnetic
field. Although the quantum nature of radiation is crucial for many purposes, when it comes to
the interaction of infrared or longer wavelength radiation with molecules, one can productively
think of the interaction in semiclassical terms. The reason is that the wavelength of infrared is on
the order of 10 micrometers, which is two to three orders of magnitude larger than the size of the
molecules we will be considering. Thus, one can think of the infrared light as providing a large
scale fluctuating electric and magnetic field which alters the environment in which the molecule
finds itself, and exerts a force on the constituent parts of the molecule. This force displaces the
nuclei and electron cloud, and excites vibration or rotation. Conversely, a vibrating or rotating
molecule creates a moving charge distribution, which classically radiates an electromagnetic wave.
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Figure 4.10: Vibration and rotation modes of a linear symmetric triatomic molecule (like CO2),
with associated charge distributions
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While one must fully take into account quantum effects in describing molecular motion, one need
not for our purposes confront the much harder problem of quantizing the electromagnetic field as
well (the problem of ”quantum field theory”). The only way in which we make use of the quantum
nature of the electromagnetic field is in converting the energy difference Eu −E` into a frequency
of light, via ∆E = hν.

The strongest interaction is between an electromagnetic field and a particle with a net charge.
A charged particle will experience a net force when subjected to an electric field, which will cause
the particle to accelerate. However, ions are extremely rare throughout most of a typical planetary
atmosphere. The molecules involved in determining a planet’s energy balance are almost invariably
electrically neutral. The next best thing to having a net charge is to have a disproportionate part
of the molecule’s negatively charged electron cloud bunched up on one side of the molecule, while a
compensating excess of positive charged nuclei are at the other side. This creates a dipole moment,
which experiences a net torque when placed in an electric field, causing the dipole axis to try to
align with the field. Interactions associated with higher order moments than the dipole lead to
absorption many orders of magnitude weaker than the dipole absorption, and can be ignored for
most planetary climate purposes.

Many common atmospheric molecules have no dipole moment in their unperturbed equilib-
rium state. Such nonpolar molecules can nonetheless couple strongly to the electromagnetic field.
They do so because vibration and rotation can lead to a dipole moment through distortion of the
equilibrium positions of the electron cloud and the nucleii. As illustrated in Figure 4.9, diatomic
molecules made of two identical atoms, do not acquire a dipole moment under the action of either
rotation or stretching. Symmetric diatomic molecules, such as N2, O2 and H2 in fact have plenty
of rotational and vibrational transitions that are in the infrared range. Because the associated
molecular distortions have no dipole moment, however, these gases are essentially transparent to
infrared unless they are strongly perturbed by frequent collisions. This is why the most com-
mon gases in Earth’s atmosphere – N2 and O2 – do not contribute to Earth’s greenhouse effect.
However, it is important to recognize that situations in which diatomic molecules become good
greenhouse gases are in fact quite common in planetary atmospheres. When there are frequent
collisions, such as happen in the high density atmospheres of Titan and on all the giant planets,
diatomic molecules acquire enough of a dipole moment during the time collisions are taking place
that the electromagnetic field can indeed interact with their transitions quite strongly. This makes
N2 and H2 the most important greenhouse gases on Titan, and H2 a very important greenhouse
gas on all the gas giant planets. In terms of volume of atmosphere affected, Hydrogen is by far the
most important greenhouse gas in the entire Solar System. Collision-induced absorption of this
type forms a continuum in which the absorption is a very smooth function of wavenumber, without
any significant line structure. Polyatomic molecules can also have significant continua, existing
alongside the line spectra. Continuum absorption will be discussed in Section 4.4.8.

CO2 is a linear molecule with the two oxygens symmetrically disposed about the central
carbon, as illustrated in Figure 4.10. A uniform stretch of such a molecule does not create a dipole
moment, but a vibrational mode which displaces the central atom from one side to the other does.
In addition, bending modes of CO2 have a fluctuating dipole moment, which can in turn be further
influenced by rotation. Both these modes are illustrated schematically in Figure 4.10. Modes of
this sort make CO2 a very good greenhouse gas - the more so because the typical energies of the
transitions involved happen to correspond to frequencies near the peak of the Planck function for
Earthlike temperatures.

Some molecules – called polar have a dipole moment even in their undisturbed state. Most
common diatomic gases made of two different elements – notably HF and HCl – are polar, and
their vibrational and rotational modes cause fluctuations in the dipole which make them quite
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good infrared absorbers. They are not commonly thought of as greenhouse gases, because they
are highly chemically reactive and do not appear in radiatively significant quantities in any known
planetary atmosphere. However, one must keep an open mind about such things. Most triatomic
atmospheric gases (H2O, SO2,O3, NO2 and H2S, among others) are polar. CO2, a symmetric
linear molecule with the carbon at the center, is a notable exception. Ammonia (NH3) is also
polar, having its three hydrogens sticking out on one side like legs of a tripod attached to the
nitrogen atom at the other side. Polar molecules couple strongly to the electromagnetic field, and
their asymmetry also gives them a rich set of coupled rotation and vibration modes with many
opportunities for transitions corresponding to the infrared spectrum. The spectrum is enriched
because rotation about the axis with the largest moment of inertia (shown as the vertical axis
for the water molecule in Figure 4.11) causes the wing molecules to fling outwards, changing the
bond angle and the dipole moment. The molecule can also rotate about an axis perpendicular to
the plane of the Figure, leading to distinct set of energy levels. Further, energy can be stored in
rotations about the axis with minimum moment of inertia (shown as horizonal in the Figure). For
a linear molecule like CO2, rotation about the corresponding axis has essentially no energy.

Let’s return now to the matter of how the OLR varies as a function of the greenhouse gas
content of an atmosphere. Essentially, we revisit the discussion of Figure 4.5, but this time in
the context of the actual absorption spectrum of CO2 instead of the hypothetical gas discussed
earlier. We use the same temperature profile as in Figure 4.5, but the OLR is computed using the
fully resolved absorption coefficient as a function of wavenumber, reproduced in the lower panel of
the Figure 4.12. The horizontal lines in this panel indicate the spectral regions that are optically
thick for CO2 paths of 1

10 , 1, and 1000 kg/m2. The upper panel shows the corresponding OLR for
the same three paths. The OLR was computed at the full spectral resolution of the lower panel,
but was smoothed over bands of width 10cm−1 to make the pattern easier to see. The smoothing
is done in such a way that the integral of the smoothed OLR curve over wavenumber yields the
same net value as the integral over the original unsmoothed curve. This calculation of OLR is
still not completely realistic, since, to keep things simple, it is carried out as if the absorption
coefficient were uniform throughout the depth of the atmosphere. In reality, κCO2 varies with both
temperature and pressure, though we’ll see eventually that to a good approximation this variation
can be handled through the introduction of an equivalent path, which is generally somewhat more
than half the actual full-atmosphere path, if the reference pressure at which absorption coefficients
are stated is taken to be the surface pressure.

Figure 4.12 explains why the OLR reduction is approximately logarithmic in greenhouse gas
concentration for CO2 and similar greenhouse gases. The key thing to note is that the absorption
coefficient in the principal band centered on 675cm−1 decays exponentially with distance from the
center. Hence, as the CO2 path is increased by a factor of 10, from 1

10 to 1 kg/m2, the width of the
ditch within which the radiating temperature is reduced to cold stratospheric values increases only
like the logarithm of the ratio of paths. This is true for paths as small as .01kg/m2 and as large
as 100kg/m2. However, when the path gets as large as 1000kg/m2, the weak absorption bands
on the shoulder, near 950 and 1050 cm−1 start to become important, and enhance the optical
thickness beyond what one would expect on the basis of the central absorption peak. 1000 kg/m2

corresponds to a partial pressure of CO2 of about 100mb for Earth’s gravity, or equivalently a
molar mixing ratio of about 10 % for Earth’s current surface pressure. This is far in excess of any
CO2 concentration on Earth likely to have been attained in the past 300 million years, but is well
within the range of what has been contemplated at the end of a Neoproterozoic Snowball episode,
or earlier during the Faint Young Sun period. Many greenhouse gases also have a central absorption
peak with exponential skirts, and these will also exhibit a nearly logarithmic dependence of OLR
on the concentration of the corresponding greenhouse gas.
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Figure 4.12: Lower panel: The absorption coefficient for CO2 at 1 bar and 300K, in the wavenum-
ber range of interest for Earthlike and Marslike planets. The horizontal lines show the wavenumber
range within which the optical thickness exceeds unity for CO2 paths of 1

10 , 1 and 1000 kg/m2. Up-
per panel: The corresponding OLR for the three path values, computed for the same temperature
profiles as in Figure 4.5. The OLR has been averaged over bands of width 10 cm−1.

With the notable exception of the collision-induced continuum discussed in Section 4.4.8,
the absorption spectrum of a gas is built by summing up the contributions of the thousands of
spectral lines from each of the radiatively active constituents of the gas. To proceed further, then,
we must look more deeply into the nature of the lines and how they are affected by pressure and
temperature.

4.4.3 I walk the line

An individual spectral line is described by a line position (i.e. the wavenumber at the center),
a line shape, a line strength (or intensity), and a line width. The line shape is described by a
nondimensional function of nondimensional argument, f(x), normalized so that the total area
under the curve is unity. The contribution of a single spectral line to the absorption coefficient for
substance G can then be written

κG(ν, p, T ) =
S

γ
f(

ν − νc

γ
) (4.60)

where νc is the frequency of the center of the line, S is the line intensity and γ is the line width.
Note that

∫
κGdν = S. As a line is made broader, the area remains fixed, so that the absorption

in the wings increases at the expense of decreased absorption near the center.

The pressure and temperature dependence of κG enters almost entirely through the pressure
and temperature dependence of S and γ. The line center νc can be regarded as independent of
pressure and temperature for the purposes of computation of planetary radiation balance. At very
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low pressures (below 1000Pa), one may also need to make the line shape dependent on pressure.

Every line has an intrinsic width determined by the charactistic time for spontaneous decay
of the higher energy state (analogous to a radioactive half-life). This width is far too narrow to
be of interest in planetary climate problems. In addition, the lines of a molecule in motion will
experience Doppler broadening, associated with the fact that a molecule moving towards a light
source will see the frequency shifted to higher values, and conversely for a molecule moving away.
For molecules in thermodynamic equilibrium, the velocities have a Gaussian distribution, and so
the line shape becomes f(x) = exp(−x2)/

√
π. The width is γ = γ(T ) = νc

v
c , where v =

√
2RT , R

being the gas constant for the molecule in question. v is a velocity, which is essentially the typical
speed of a molecule at temperature T . For CO2 at 250K, the Doppler line width for a line with
center 600cm−1 is only about .0006cm−1.

The type of line broadening of primary interest in planetary climate problems is collisional
broadening, alternatively called pressure broadening. Collisional broadening arises because the
kinetic energy of a molecule is not quantized, and therefore if a molecule has experienced a collision
sufficiently recently, energy can be borrowed from the kinetic energy in order to make up the
difference between the photon’s energy and the energy needed to jump one full quantum level.
The theory of this process is exceedingly complex, and in many regards incomplete. There is a
simple semi-classical theory that predicts that collision-broadened lines should have the Lorentz
line shape f(x) = 1./(π · (1 + x2)), and this shape seems to be supported by observations, at least
within a hundred widths or so of the line center. For the Lorentz shape, absorption decays rather
slowly with distance from the center; 10 half-widths γ from the center, the Lorentz absorption has
decayed to only 1

101 of its peak value, whereas the Gaussian doppler-broadened line has decayed to
less that 10−43 of its peak. There are both theoretical and observational reasons to believe that the
very far tails of collision broadened lines die off faster than predicted by the Lorentz shape. A full
discussion of this somewhat unsettled topic is beyond the level of sophistication which we aspire
to here, but the shape of far-tails has some important consequences for the continuum absorption,
which will be taken up briefly in Section 4.4.8.

In the simplest theories leading to the Lorentz line shape, the width of a collision-broadened
line is proportional to the mean collision frequency, i.e. the reciprocal of the time between collisions.
The Lorentz shape is valid in the limit of infinitesimal duration of collisions; it is the finite time
colliding molecules spend in proximity to each other that leads to deviations from the Lorentz
shape in the far tails, but there is at present no general theory for the far-tail shape. For many
common planetary gases the line width is on the order of a tenth of a cm−1 when the pressure is 1
bar and the temperature is around 300K. For fixed temperature, the collision frequency is directly
proportional to pressure, and laboratory experiment shows that the implied proportionality of line
width to pressure is essentially exact. Holding pressure fixed, the density goes down in inverse
proportion to temperature while the mean molecular velocity goes up like the square root of
temperature. This should lead to a collision frequency and line width that scales like 1/

√
T .

Various effects connected with the way the collision energy affects the partial excitation of the
molecule lead to the measured temperature exponent differing somewhat from its ideal value of 1

2 .
Putting both effects together, if the width is known at a standard state (po, To), then it can be
extrapolated to other states using

γ(p, T ) = γ(po, To)
p

po
(
To

T
)n (4.61)

where n is a line-dependent exponent derived from quantum mechanical calculations and laboratory
measurements. It is tabulated along with standard-state line widths in spectral line databases. One
must typically go to very low pressures before Doppler broadening starts to become important.
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For example, for a collision-broadened line with width .1cm−1 at 1 bar, the width doesn’t drop
to values comparable to the Doppler width until the pressure falls to 6mb – comparable to the
middle stratosphere of Earth or the surface pressure of Mars. Even then, the collision broadening
dominates the absorption when one is not too close to the line center, because the Lorentz shape
tails fall off so much more gradually than the Gaussian.

Another complication is that the collision-broadened line width depends on the molecules
doing the colliding. Broadening by collision between molecules of like type is called self-broadening,
while that due to dissimilar molecules is called foreign broadening. The simple Lorentz theory would
suggest a proportionality to collision rate, which is a simple function of the ratio of molecular
weights. Not only does the actual ratio of self to foreign broadened width deviate from what
would be expected by this ratio, but the ratio actually varies considerably from one absorption
line to another. For CO2, for example, some self-broadened lines have essentially the same width
as for the air-broadend case, whereas others can have widths nearly half again as large. For water
vapor, the disparity is even more marked. Evidently, some kinds of collisions are better at partially
exciting energy levels than others. There is no good theory at present that enables one to anticipate
such effects. Standard spectral databases tabulate the self-broadened and air-broadened widths
at standard temperature and pressure, but if one were interested in broadening of water vapor by
collisions with CO2 (important for Early Mars) or broadening of NH3 by collisions with H2 (on
Jupiter or Saturn) , one would have to either find specialized laboratory experiments or extrapolate
based on molecular weights and hope for the best.

The line intensities are independent of pressure, but they do increase with temperature. For
temperatures of interest in most planetary atmospheres, the temperature dependence of the line
intensity is well described by

S(T ) = S(To)(
T

To
)n exp(−hν`

k
(
1
T
− 1

To
)) (4.62)

where n is the line-width exponent defined above and hν` is the energy of the lower energy state
in the transition that gives rise to the line. This energy is tabulated in standard spectroscopic
databases, and is usually stated as the frequency ν`. Determination of the lower state energy
is a formidable task, since it means that one must assign an observed spectral line to a specific
transition. When such an assignment cannot be made, one cannot determine the temperature
dependence of the strength of the corresponding line.

Now let’s compute the average transmission function associated with a single collision-
broadened spectral line in a band of wavenumbers of width ∆. We’ll assume that the line is
narrow compared to ∆, so that the absorption coefficient can be regarded as essentially zero at
the edges of the band. Without loss of generality, we can then situate the line at the center of the
band. The mean transmission function is

T̄(p1, p2) =
1
∆

∫ ∆/2

−∆/2

[exp(− 1
gπ

∫ p2

p1

S(T )γq

ν′2 + γ2
dp)]dν′ (4.63)

where ν′ = ν − νc. The argument of the exponential is just the optical thickness of the layer
between p1 and p2, and to keep the notation simple we will assume the integral to be taken in the
sense that makes it positive. The double integral and the nonlinearity of the exponential make
this a hard beast to work with, but there are two limits in which the result becomes simple. When
the layer of atmosphere between p1 and p2 is optically thin even at the center of the line, where
absorption is strongest, the line is said to be in the weak line regime. All lines are in this regime in
the limit p2 → p1, though if the line is very narrow or the intensity is very large, the atmospheric
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layer might have to be made exceedingly small before the weak line limit is approached. For weak
lines the exponential can be approximated as exp(−δτ) ≈ 1.− δτ , whence

T̄(p1, p2) ≈ 1− 1
∆

∫ ∆/2

−∆/2

1
gπ cos θ̄

∫ p2

p1

S(T )γq

ν′2 + γ2
dpdν′

= 1− 1
∆

1
g cos θ̄

∫ p2

p1

S(T )qdp

= 1− 1
∆

S(To)`w

(4.64)

where To is a constant reference temperature and the weighted path for strong lines is

`w(p1, p2) ≡
1

g cos θ̄

∫ p2

p1

S(T (p))
S(To)

q(p)dp (4.65)

Note that for weak lines, the averaged transmission is independent of the line width. From the
expression for T̄ we can define the equivalent width of the line, W ≡ S(To)`w. To understand the
meaning of the equivalent width, imagine that absorption takes all of the energy out of the incident
beam within a range of wavenumbers of width W , leaving the rest of the spectrum. undisturbed.
The equivalent width W is defined such that the amount of energy thus removed is equal the
amount removed by the actual absorption, which takes just a little bit of energy out of each
wavenumber throughout the spectrum.

When the layer of atmosphere between p1 and p2 is optically thick at the line center, the
transmission is reduced to nearly zero there. This defines the strong line limit. For strong lines,
there is essentially no transmission near the line center; all the transmission occurs out on the wings
of the lines. Since essentially nothing gets through near the line centers anyway, there is little loss
of accuracy in replacing the line shape by it’s far-tail form, π−1Sγ/ν′2. With this approximation
to the line shape, the band-averaged transmission may be written:

T̄(p1, p2) ≈
1
∆

∫ ∆/2

−∆/2

[exp(− 1
ν′2

1
gπ cos θ̄

∫ p2

p1

S(T )γqdp)]dν′

=
1
∆

∫ ∆/2

−∆/2

exp(− X

ν′2
)dν′

=
1

2ζm

∫ ζm

−ζm

exp(− 1
ζ2

)dζ

(4.66)

where X ≡
√

S(To)γ(po, To)`s/π, and the weighted path for strong lines is

`s ≡
1

g cos θ̄

∫ p2

p1

S(T (p))
S(To)

(
To

T
)n p

po
q(p)dp (4.67)

The third line in the expression for T̄ comes from introducing the rescaled dummy variable ζ ≡
ν′/
√

X; the limit of integration then becomes ζm = ∆/(2
√

X) Unless the path is enormous, ζm

will be very large, because the averaging interval ∆ is invariably taken to be much larger than the
typical line width (otherwise there would be little point in averaging). For ζm >> 1, the integral
in the last line can be evaluated analytically, and is∫ ζm

0

exp(− 1
ζ2

)dζ ≈ ζm −
√

π (4.68)
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(see Problem ??). Therefore, substituting for X, the expression for T̄ in the strong limit becomes

T̄(p1, p2) ≈ 1− 1
∆

2
√

S(To)γ(po)`s (4.69)

For strong lines the equivalent width is W ≡ 2
√

S(To)γ(po)`s. In this case, the width of the
chunk taken out of the spectrum increases like the square root of the path because the absorption
coefficient decreases like 1/ν′2 with distance from the line center, implying that the width of the
spectral region within which the atmosphere is optically thick scales like the square root of the
path. Unlike weak lines, strong lines really do take almost all of the energy out of a limited
segment of the spectrum. The multiplicative property for transmission is equivalent to an additive
property for equivalent width. The nonlinearity of the square root linking path to equivalent width
in the strong line case thus means that the band-averaged transmission has lost the multiplicative
property. As in our earlier general discussion of this property, the loss stems from the progressive
depletion of energy in parts of the spectrum near the line center.

The pressure-weighting of the strong-line path reflects the fact that, away from the line
centers, the atmosphere becomes more optically thick as pressure is increased and the absorption
is spread over a greater distance around each line. Note that if we choose as the reference pressure
po any pressure that remains between p1 and p2, then `s → `w as p1 → p2. In this case, one can use
the strong line path `s regardless of the pressure range, since the strong line path reduces to the
correct weak line path for thin layers where weak line approximation becomes valid. A common
choice for the reference pressure is the average (p1 + p2)/2 but one could just as well choose one of
the endpoints of the interval instead. In the case of a well-mixed greenhouse gas (constant qG) for a
nearly isothermal layer, the equivalent path becomes 1/ cos θ̄ times 1

2g qG(p2
2−p2

1)/po, which reduces
to the actual mass path qG(p2 − p1)/g if po is taken to be the average. In this case, one gets the
correct transmission by using the conventional mass path with absorption coefficients computed
for the average pressure of the layer. This is known as the Curtiss-Godson approximation.

In solving radiative transfer problems related to planetary climate, one typically takes the
bandwidth ∆ large enough that the band contains a great many lines. For example, there are about
600 CO2 lines in the band between 600 and 625 cm−1. In the weak line limit the transmission is
linear in the absorption coefficient, so one can simply sum the equivalent widths of all the lines
in the band to obtain the total equivalent width W =

∑
Wi. For strong lines, the situation is

a bit more complicated, because of the nonlinearity of the exponential function. For the same
reasons one loses the multiplicative property of transmission upon band averaging, one generally
loses the additive property of equivalent widths. There is one important case in which additivity
of equivalent widths is retained, however. If the lines are non-overlapping, in the sense that they
are far apart compared to the width over which each one causes significant absorption, then the
absorption from each line behaves almost as if the line were acting in isolation. In this case,
each line essentially takes a distinct chunk out of the spectrum, and the equivalent widths can be
summed up to yield the net transmission.

The additivity of strong-line equivalent widths breaks down at large paths. Since each Wi

increases like the square root of the path, eventually the sum exceeds ∆, leading to the absurdity
of a negative transmission. What is going wrong is that, as the equivalent widths become large,
the absorption regions associated with each line start to overlap. One is trying to take away the
same chunk of the spectrum more than once. This doesn’t work for spectra any more than it
works for ten hungry people trying to eat an eighth of a pizza each. One approach which has met
with considerable success is to assume that the lines are randomly placed, so that the transmission
functions due to each line are uncorrelated. This is Goody’s Random Overlap Approximation. For
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uncorrelated transmission functions, the band-averaged transmissions can be multiplied, yielding

T̄ ≈ (1− W1

∆
)(1− W2

∆
)...(1− WN

∆
)

= exp
∑

ln(1− Wi

∆
)

≈ exp(− 1
∆

∑
Wi)

(4.70)

The last step follows from the assumption that each individual equivalent width is small compared
to ∆. Note that when the sum of the equivalent widths is small compared to ∆, this expression
reduces to the previous expression given for individual or non-overlapping lines.

The line parameters laid out above – position, width,strength and temperature scaling – lie
at the heart of most real-gas radiative transfer calculations. There being thousands of spectral lines
for dozens of substances of interest in planetary climate, teasing out the data one needs from the
original literature is a daunting task. Fortunately, a small but dedicated group of spectroscopists
4 have taken on the task of validating, cross-checking and assembling the available line data into a
convenient database known as HITRAN. It is suitable for most planetary calculations, though it must
sometimes be supplemented with information on absorption that is not associated with spectral
lines (the continuum absorption), and with additional data on weak lines which are important in
the extremely hot, dense atmosphere of Venus. Instructions for obtaining the HITRAN database,
along with sources for additional spectral data of use on Venus, Titan and Jupiter, are given in the
references section at the end of this chapter, and the software supplement to this book provides a
simple set of routines for reading and performing calculations with the HITRAN database.

4.4.4 Behavior of the band-averaged transmission function

Although the absorption spectrum has very complex behavior, the band-averaged transmission
function averages out most of the complexity. The definition of the transmission guarantees that
it decays monotonically as |p1 − p2| increases and the path increases, but in addition the decay is
invariably found to be smooth, proceeding without erratic jumps, kinks or other complex behavior.
This smoothness is what makes computationally economical radiative transfer solutions possible,
and the various schemes for carrying out the calculation of fluxes amount to different ways of
exploiting the smoothness of the band-averaged transmission function.

By way of example, the band-averaged transmission function for CO2 is shown for three
different bands in Fig. 4.13. The calculation of T̄ν(p1, p2) was carried out using a straightforward
– and very time consuming – integration of the transmission over frequency; at each frequency
in the integrand, one must do an integral of κCO2(ν, p) over pressure, and each of those κ must
be evaluated as a sum over the contributions of up to several hundred lines. Temperature was
held constant at 296K and a constant mass-specific concentration of .0005 (330ppmv) of CO2

mixed with air was assumed. The pressure p1 was held fixed at 100mb, while p2 was varied from
100mb to 1000mb. This plot thus gives an indication of the upward flux transmitted from each
layer of the atmosphere, as seen looking down from the Earth’s tropical tropopause. The results
are plotted as a function of the pressure-weighted strong-line path, which for constant q and T is
q · (p2

2 − p2
1)/(2gpo cos ¯theta), where the reference pressure po is taken to be 105Pa. Plotting the

results this way makes it easier to compare them with theoretical expectations, and also makes it
easier to generalize the results to transmission between different pairs of pressure levels, which will

4May they live forever!
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have different amounts of pressure broadening. The rationale for using the strong-line path is that
the lines are narrow enough that almost all parts of the spectrum are far from the line centers in
comparison to the width, and in such cases the collision-broadened absorption coefficient increases
linearly with pressure almost everywhere. This behavior is incorrect near the line centers, but
the error in the transmission introduced by this shortcoming is minimal, since the absorption is so
strong there the contribution to the transmission is essentially zero anyway. This reasoning – based
directly on what we have learned from the strong-line limit – is at the basis of most representations
of pressure-broadening effects in radiative calculations. Here, we only are using it as a graphical
device, since the transmission itself is computed without approximation. Note that the strong
line path becomes proportional to the (weak-line) mass path q · (p2 − p1)/(g cos θ̄) when p2 → p1,
with proportionality constant p1/po. In the present calculation, when p2 is at its limit of 1000mb,
the path is about 5kg/m2, which is about half the unweighted mass path over the layer. This
reflects the fact that the lower pressure over most of the layer weakens the absorption relative to
the reference value at p = po.

Apart from noticing that the transmission function is indeed smooth, we immediately remark
that the transmission first declines sharply, as portions of the spectrum with the highest absorption
coefficient are absorbed. At larger paths, the spectrum becomes progressively more depleted in
easily-absorbed wavenumbers, and the decay becomes slower. For the two strongly absorbing bands
in the left panel, the transmission curve becomes nearly vertical at small paths, as suggested by
the square-root behavior of the strong line limit. There is guaranteed to be a weak-line region at
sufficiently small paths, where the slope becomes finite, but in these bands the region is so tiny it is
invisible. In fact, the strong line transmission function in Eq. 4.69 fits the calculated transmission
in the 575-600 cm−1 band almost exactly throughout the range of paths displayed, when used
with the random-overlap modification in Eq. 4.70. For the more strongly absorbing 600-625 cm−1

band the fit is very good out to paths of 1.5 kg/m2, but thereafter the actual transmission decays
considerably more rapidly than the strong-line form. This mismatch occurs because the derivation
of the strong-line transmission function assumes that the absorption coefficients within the band
approach zero arbitrarily closely: as more and more radiation is absorbed, there is always some
region where the absorption coefficient is arbitrarily close to zero, which leads to ever-slower decay.
In reality, overlap between the skirts of the lines leads to finite-depth valleys between the peaks (see
the inset of Fig. 4.7), and the absorption is bounded below by a finite positive value. The decay
of the transmission at large paths is determined by the local minima in the valleys, and will tend
toward exponential decay, rather than the slower decay predicted by the strong line approximation.

For the weakly absorbing band shown in the right panel of Fig. 4.13, a hint of weak-
line behavior can be seen at small values of the path, with the result that the behavior diverges
noticeably from the best strong-line fit. The representation of the transmission can be improved by
adopting a two-parameter fit tailored to give the right answer in both the weak and strong limits.
The Malkmus model is a handy and widely-used example of this approach. It is defined by

∑
Wi = 2

R2

S

p1

po
(

√
1 +

S2

R2
(
po

p1
)2`s − 1) (4.71)

where R and S are the parameters of the fit 5. The parameters can be identified with characteristics
of the absorption spectrum in the band by looking at the weak line (small `s) and strong line (large
`s) limits. For small `s, the sum of the equivalent widths is S · (po/p1)`s = S`w, so by comparing

5The factor p1/po deals with the difference between the strong line and weak line paths, and is necessary so that
the limits work out properly for small and large path. There is some flexibility in defining this factor. It is common
to use 1

2
(p1 + p2)/po to make things look more symmetric in p1andp2. This slightly changes the way the function

interpolates between the weak and strong limits, without changing the endpoint behavior
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Figure 4.13: The band averaged transmission as a function of path, for the three different bands,
as indicated. In each case, the transmission is computed between a fixed pressure p1 = 100mb
and a higher pressure p2 ranging from 100mb to 1000mb. Calculations were carried out assuming
the temperature to be constant at 296K, with a constant CO2 specific concentration of q = .0005,
and assuming a mean propagation angle cos ¯theta = 1

2 . Results are plotted as a function of the
pressure-weighted path for strong lines, q · (p2

2 − p2
1)/(2gpo cos ¯theta), where po = 1000mb. In

the left panel, the best fit to the strong-line transmission function is shown as a dashed curve;
the fit is essentially exact for the 575 − 600cm−1 band, so the fitted curve isn’t visible. For the
weaker absorption band in the right panel, fits are shown both for the strong line and the Malkmus
transmission function, but the Malkmus fit is essentially exact and can’t be distinguished.

with Eq. 4.64 we identify S as the sum of the line intensities. For large `, the sum is 2
√

R2`, whence
on comparison with Eq. 4.69 we identify R2 as the sum of γi(po)Si for all the lines in the band.
The parameters R and S can thus be determined directly from the database of line intensities and
widths, though in some circumstances it can be advantageous to do a direct fit to the results of a
line-by-line calculation like that in 4.13 instead. One uses the Malkmus equivalent-width formula
with the random-overlap transformation given in Eq. 4.70, so as to retain validity at large paths.
With the Malkmus model, the transmission function in the weakly absorbing 550-575 cm−1 band
can be fit almost exactly. Since the Malkmus model reduces to the strong line form at large paths,
it fits the transmission functions in the left panel of Fig. 4.13 at least as well as the strong line
curve did. However, it does nothing to improve the fit of the strongly absorbing case at large paths,
since that mismatch arises from a failure of the strong-line assumption itself.

The Malkmus model is a good basic tool to have in one’s radiation modelling toolkit. It
works especially well for CO2, and does quite well for a range of other gases as well. There are other
fits which have been optimized to the characteristics of different greenhouse gases (e.g. Fels-Goody
for water vapor), and fits with additional parameters. Most of the curve-fit families have troubles
getting the decay of the transmission right when very large paths are involved, though if the trouble
only appears after the transmission has decayed to tiny values, the errors are inconsequential.

Empirical fits to the transmission function are a time-honored and effective means of dealing
with infrared radiative transfer. This approach has a number of limitations, however. We have
already seen some inadequacies in the Malkmus model when the path gets large; patching up
these problems leads to fits with more parameters, and finding fits that are well-tailored to the
characteristics of some new greenhouse gas one wants to investigate can be quite involved. It
also complicates the implementation of the algorithm to have to use different classes of fits for
different gases, and maybe even according to the band being considered. A more systematic and
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Figure 4.14: Evaluation of the area under a curve by Lebesgue integration

general approach is called for. The one we shall pursue now, known as exponential sums, has the
additional advantage that it can be easily generalized to allow for the effects of scattering, which
is not possible with band-averaged fits like the Malkmus model. As a gentle introduction to the
subject, let’s consider the behavior of the integral

T̄(`) =
1
∆

∫ νo+∆/2

νo−∆/2

e−κG(ν)`dν (4.72)

where κG is the absorption coefficient for a greenhouse gas G and ` is a mass path. This would
in fact be the exact expression for the band-averaged transmission for a simplified greenhouse gas
whose absorption coefficient is independent of pressure and temperature. In this case, the path `
between pressure p1 and p2 is simply the unweighted mass path |

∫
qdp|/(g cos θ̄), which reduces

to q|p1 − p2|/(g cos θ̄) if the concentration q is constant.

The problem we are faced with is the evaluation of the integral of a function f(x) which
is very rapidly varying as a function of x. The ordinary way to approximate the integral is as a
Riemann-Stieltjes sum, dividing the interval up into N sub-intervals [xj , xj+1] and summing the
areas of the rectangles, i.e. ∫ 1

0

f(x)dx ≈
N∑
1

f(
xj + xj+1

2
)(xj+1 − xj) (4.73)

The problem with this approach is that a great many rectangles are needed to represent the complex
area under the curve f(x). Instead, we may define the function H(a), which is the sum of the
lengths of the intervals for which f(x) ≤ a, as illustrated in Fig. 4.14. Now, the integral can be
approximated instead by the sum∫ 1

0

f(x)dx =
∫ fmax

f=fmin

fdH(f) ≈
M∑
1

fj + fj+1

2
(H(fj+1)−H(fj)) (4.74)

where we have divided the range of the function f (i.e. [f1, f2]) into M partitions. This repre-
sentation can be very advantageous if H(f) is a much more smoothly varying function than f(x).
To mathematicians, this form of the approximation of an integral by a sum is the first step in
the magnificent apparatus of Lebesgue integration, leading onwards to what is known as measure
theory, which forms the basis of rigorous real analysis.

The idea is to apply the Lebesgue integration technique to the transmission function defined
in Eq 4.72, with the absorption coefficient κG playing the role of f and the frequency ν playing
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Figure 4.15: Cumulative probability function of the natural log of the absorption coefficient for
CO2. Results are given for the 600-625 cm−1 and 575-600 cm−1 bands, and were computed at a
pressure of 100mb and a temperature of 296K.

the role of x. Thus, if H(a) is the sum of the lengths of the frequency intervals in the band for
which κG ≤ a, then H(a) = 0 when a is less than the minimum of κG and H(a) approaches the
bandwidth ∆ when a approaches the maximum of κG. The transmission function can then be
written approximately as

T̄(`) =
∫ κmax

κmin

e−κG`dH(κG) ≈
M∑
1

e−(κj+1+κj)`/2(H(κj+1)−H(κj)) (4.75)

This is the exponential sum formula. It can be regarded as an M term fit to the transmission
function, much as the Malkmus model is a two-parameter fit. The Lebesgue integration technique
amounts to a simple reshuffling of the terms in the integrand: we collect together all wavenumbers
with approximately the same κ, compute the transmission for that value, and then weight the
result according to ”how many” such wavenumbers there are.

Because the absorption coefficient varies over such an enormous range, it is more convenient
to work with H(lnκ) rather than H(κ). A typical result for CO2 is shown in Fig. 4.15, computed
for two bands at a pressure of 100mb. The function is quite smooth, and can be reasonably well
characterized by ten points or less. In contrast, given that the typical line width at 100mb is only
.01cm−1, evaluation of the transmission integral in the Riemann form, Eq. 4.73, would require at
least 25000 points in a band of width 25cm−1. Thus, the exponential sum approach is vastly more
economical of computer time than a direct line-by-line integration would be.

The decay of the transmission with path length described by Eq. 4.75 is exactly analogous
to the decay in time of the concentration of a mixture of radioactive substances with different
half-lives. The short-lived things go first, leading to rapid initial decay of concentration; as time
goes on, the mixture is increasingly dominated by the long-lived substances, and the decay rate
is correspondingly slower. The way the transmission function converges as additional terms are
included in the exponential sum formula is illustrated in Figure 4.16. Specifically, we divide the
range of absorption coeffients into 20 bins equally spaced in log κG, and then truncate H so as
to keep only the N largest absorption coefficients, with N ranging from 1 (retaining only the
strongest absorption) to 20 (retaining all absorption coefficients including the weakest). When
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Figure 4.16: Convergence of exponential sum representation of the band averaged transmission
function as the number of terms is increased. The calculation is for CO2 in a wavenumber band
near the peak absorption.

only the strongest absorptions are included, the steep decay of transmission for small paths is
correctly represented, but the transmission function decays too strongly at large paths. As more of
the weaker absorption terms are included, the weaker decay of the transmission is well represented
out to larger and larger paths. The ability to represent the decay rate of transmission over a very
large range of paths is one of the two advantages of exponential sums over the Malkmus approach,
the other advantage being the ability to incorporate scattering effects. An analytical example
exploring related features of the exponential integral in Eq. 4.75 is explore in Problem ??.

If it weren’t for the dependence of absorption coefficient on pressure and temperature, the
exponential sum representation would be exact in the limit of sufficiently many terms. The compu-
tational economy of exponential sums comes at a cost, however, which is scrambling the information
about which absorption coefficient corresponds to which frequency. This is not a problem if one is
dealing with a layer with essentially uniform pressure and temperature, but it becomes a cause for
concern in the typical atmospheric case where one is computing the transmission over a layer span-
ning considerable variations in temperature and pressure. The problem is that changing pressure or
temperature changes the shape of the distribution H(κ), and there is no rigorously correct way to
deal with this within the exponential sum framework. In the discussion of line shapes, for example,
we learned that increasing p reduces the peak absorption, but increases absorption between peaks.
In terms of the probability distribution of κ, this means that the largest and smallest values of κ
become less prevalent at the same time that the intermediate values become more prevalent. At
very large values of pressure where the lines become extremely broad, κ becomes a smooth function
of frequency within each band and the probability distribution becomes concentrated on a single
mean value of κ. The effect of temperature on the shape of H(κ) can be even more complex, since
the temperature-dependence coefficients of line strength can differ greatly even for neighboring
lines.

All these problems notwithstanding, experience has shown that one can obtain a reason-
ably accurate approximation to the band-averaged transmission function by assuming that all the
absorption coefficients within a band have separable scaling of the form

κG(p, T ) = κG(po, To)F (p/po, T/To) (4.76)

Given scaling of this sort, one can compute the transmission for a path through an inhomogeneous
atmosphere using Eq 4.75, by defining a suitable equivalent path. For example, if the specific
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concentration of the greenhouse gas is qG, the absorption scaling is linear in pressure, and the
temperature dependence scales according to a function S(T/To), then the equivalent path for the
layer between p1 and p2 is

` =
1
g

∫ p2

p1

qG(p)
p

po
S(

T (p)
To

)dp (4.77)

The temperature scaling function S would be computed separately for each band. The use of
linear scaling in pressure is justified by the fact that most of the spectrum is far from line centers,
so absorption scales like the strong-line approximation as long as the pressure is not so large
that line widths become comparable to the width of the band under consideration. The use of a
single temperature-scaling function is harder to justify theoretically, but seems to be supported by
numerical experiment.

When qG is not small, there is one additional complication to take into account when defining
the equivalent path. Namely, the absorption coefficient for self-broadened collisions is generally
different from that for foreign-broadened collisions, so one must scale the absorption coefficient
according to the proportion of self vs. foreign collisions. Like the temperature scaling factor, the
ratio of self to foreign broadening can vary considerably even amongst nearby lines. Typically,
though, one simply chooses a representative ratio of self to foreign broadening which is assumed
constant within each band over which the distribution H is computed. Let’s call this ratio aself .
The molar concentration of the greenhouse gas is (M̄/MG)qG, where M̄ is the mean molecular
weight of the mixture; hence the proportion of collisions which are self-collisions is (M̄/MG)qG

while the proportion of foreign collisions is 1 − (M̄/MG)qG. Then, if H is computed using the
foreign-broadened absorption at the standard pressure, the appropriate equivalent path to use in
computing the transmission is

` =
1
g

∫ p2

p1

(1 +
M̄

MG
qG(p)(aself − 1))qG(p)

p

po
S(

T (p)
To

)dp (4.78)

For a pure one-component atmosphere, (M̄/MG)qG = 1 and one simply uses the self-broadened
absorption coefficients in preparing the distribution H(κ), rather than going through the interme-
diary of defining aself for each band.

Because the scaling of absorption coefficient with pressure and temperature is only approxi-
mate, it is important to compute H for a reference pressure and temperature that is characteristic
of the general range of interest for the atmosphere under consideration, so as to minimize the
amount of scaling needed. Typically, one might use a half or a tenth of the surface pressure as the
reference pressure, and a mid-tropospheric temperature as the reference temperature; if one were
primarily interested in stratospheric phenomena, or if one were computing OLR on a planet like
Venus where most of the OLR comes from only the uppermost part of the atmosphere, pressures
and temperatures characteristic of a higher part of the atmosphere would be more appropriate.

4.4.5 Dealing with multiple greenhouse gases

We now know how to efficiently compute the band-averaged transmission function for a single
greenhouse gas acting alone. It is commonly the case, however, that two or more greenhouse gases
are simultaneously present – CO2, CH4 and water vapor in Earth’s case, for example. How do
we compute the averaged transmission function is this situation? The issues are closely related
to thosed discussed in Section 4.4.1 in connection with the loss of the multiplicative property
in band-averaged transmission functions. Similar reasoning shows that the average transmission
function for two greenhouse gases acting together generally differs from the product of the averaged
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transmission functions of each of the individual gases taken alone. Fortunately, however, the special
circumstances under which the multiplicative property holds for multiple gases are expected to be
fairly common.

By way of illustration, let’s consider an idealized greenhouse gas A with transmission function
TA(ν) in a wavenumber band of width ∆, with the property that TA = a on a set of wavenumber
subintervals with length adding up to r ·∆, but with TA = 1 elsewhere; naturally, we require a < 1
and r ≤ 1. Consider a second greenhouse gas B with TB = b on a set of wavenumber subintervals
with length adding up to s ·∆, and with TB = 1 elsewhere. The band-averaged transmission for
gas A in isolation is r · a+(1− r), and for B in isolation is s · b+(1− s). What is the transmission
when both gases act in combination?

The answer depends on how the regions of absorption of gas A – spectral regions where
TA < 1 – line up with those of gas B. We can distinguish three limiting cases. First, the regions of
absorption of the two gases may be perfectly correlated, in which case r = s, TA(ν) = a precisely
where TB(ν) = b, and

T̄(ν) =
1
∆

∫ ν+∆/2

ν−∆/2

TA(ν′)TB(ν′)dν′

= rab + (1− r)
= T̄AT̄B − r(1− r)(a + b− ab− 1)

(4.79)

Further, a + b− ab = a + (1− a)b, and so this expression has a value lying between a and b, both
of which are less then unity. Hence (a + b − ab − 1) < 0 and r(1 − r)(a + b − ab − 1) ≤ 0, given
that 0 ≤ r ≤ 1. We conclude that the mean transmission function for the two gases acting in
concert is always greater than or equal to the product of the individual transmission functions, the
equality applying only when r = 0 or r = 1, i.e. when there is no absorption or completely uniform
absorption. For example, if we take r = 1

2 and a = b = frac110, the mean transmission function for
the two gases acting together is 101

200 , or just a bit over a half, whereas the individual transmission
functions are 11

20 each, multiplying out to 121
400 or just over a quarter. When the absorption regions

of the two gases coincide, the gases acting together transmit considerably more radiation than one
would infer by allowing each gas to act independently in sequence. This happens because one of
the gases uses up some of the frequencies that the other gas would like to absorb.

Exercise 4.4.1 Derive the final equality in Eq. 4.79. Sketch graphs of transmission functions
vs. frequency for the two gases for two different cases illustrating perfectly correlated absorption
regions. Evaluate the mismatch between T̄ and T̄AT̄B for a = b = r = 1

2
. Allowing a, b and r to

vary over all possible values, what is the greatest possible mismatch?

At the other extreme, the absorption regions of the two gases may be completely disjoint,
so that TA = 1 wherever TB = b < 1 and TB = 1 wherever TA = a < 1. For this to be possible,
we require r + s ≤ 1. In the disjoint case,

T̄(ν) =
1
∆

∫ ν+∆/2

ν−∆/2

TA(ν′)TB(ν′)dν′

= ra + sb + (1− (r + s))
= T̄AT̄B − rs(1− a)(1− b)

(4.80)

In the disjoint case, then, the transmission for the two gases acting together is always less than
the compounded transmission of the two gases acting independently.



190CHAPTER 4. RADIATIVE TRANSFER IN TEMPERATURE-STRATIFIED ATMOSPHERES

Exercise 4.4.2 Derive the final equality in Eq. 4.80. Sketch some transmission functions illus-
trating the disjoint case. Put in a few numerical values for a, b, r and s to show the size of the
mismatch between T̄ and T̄AT̄B. What is the greatest possible mismatch in the disjoint case?

As the final limiting case, suppose that the absorption of the two gases is uncorrelated, so
that at any given frequency the probability that TA = a is r regardless of the value of TB there,
and the probability that TB = b is s regardless of the value of TA there. This situation is also
known as the random overlap case. In this case

T̄(ν) =
1
∆

∫ ν+∆/2

ν−∆/2

TA(ν′)TB(ν′)dν′

= r(1− s)a + s(1− r)b + rsab + (1− r)(1− s)
= T̄AT̄B

(4.81)

The reasoning behind the second line is that r(1 − s) is the probability that only the first gas
is absorbing, s(1 − r) is the probability that only the first gas is absorbing, rs is the probability
that both gases are absorbing, and (1− r)(1− s) is the probability that neither gas is absorbing.
Multiplying out the terms in the product of TA and TB we find that in the random overlap case,
the mean transmission of the two gases acting together is precisely the same as the compounded
transmission of the two gases acting independently.

The properties illustrated by the three cases just discussed can be generalized to an arbitrary
set of transmission functions. Let TA and TB be any two transmission functions, and define the
fluctuation

T′A = TA − T̄A (4.82)

and similarly for TB . Then,
TATB = T̄AT̄B + T′AT′B (4.83)

From this we conclude that the transmission of the two gases acting in concert is greater than the
product of the individual transmissions if the two transmissions are positively correlated, less than
the product of the individual transmissions of the two transmissions are negatively correlated, and
equal to the product if the two transmissions are uncorrelated.

In fact, by exercising just a little more mathematical sophistication, it is possible to go
further and put an upper bound on the amount by which the mean transmission function for joint
action by the two gases deviates from the product of the individual transmission functions. The
key is to use a handy and powerful relation known as the Schwarz Inequality, which states that
for any two functions f(x) and g(x), (fg)2 ≤ f

2
g2, where an overbar indicates an average over x.

The equality applies only when f(x) is proportional to g(x). Applying the Schwarz Inequality to
Eq. 4.83, we find that the deviation satisfies the inequality

|T′AT′B | ≤
√

(T′A)2
√

(T′B)2 (4.84)

In other words, in the worst case the deviation can become as large as the product of the standard
deviations of the two individual transmission functions. Since 0 ≤ T′A,B ≤ 1, the maximum
standard deviation is 1

2 , occuring when each transmission function is zero for half of the frequencies
in the band and unity for the other half; the error in random overlap in this case is + 1

4 if the
transmissions are perfectly correlated and − 1

4 if the transmissions are perfectly anticorrelated.
These errors should be compared to the random-overlap value for the limiting case, which is 1

4 .
The effects of non-random overlap are potentially severe.
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Fortunately, the situation is rarely as bad as the worst-case suggests. The positions of
spectral lines are a sensitive function of molecular structure, so it is a reasonable guess that the ab-
sorption spectra of dissimilar molecules should be fairly uncorrelated. Thus, in most circumstances
one can get a reasonable approximation to the joint transmission function by computing the indi-
vidual transmission functions for each gas and taking the product of the individual transmission
functions. It is fairly easy, if computationally expensive, to test the accuracy of the random-overlap
assumption in a given band by computing the correlations of the full frequency-dependent trans-
mission functions in the band. However, finding a general characterization of the correction to
random-overlap, and the way the correction depends on the concentrations of the individual gases,
is an intricate art which we will not pursue here.

4.4.6 A homebrew radiation model

We have now laid out all the ingredients that go into a real gas radiation model, and are ready to
begin assembling them. The ingredients are:

• A means of computing the band-averaged transmission over a specified wavenumber range

• The band-averaged integral (Eq. 4.11,4.12, or 4.13) giving the band-averaged solution to the
Schwartzschild equation in terms of the preceding transmission functions

and the recipe is:

• Divide the spectrum into bands of a suitable width

• Prepare in advance: Malkmus coefficients or exponential sum coefficients H(lnκ) for each
band, for each greenhouse gas present in significant quantities in the atmosphere

• Program up a function to compute the band averaged transmission in each band, using the
coefficients prepared in the previous step.

• If there are multiple greenhouse gases, do the preceding for each individual greenhouse gas
and combine the resulting transmission functions, allowing suitably for the nature of the
overlap between absorption bands of the competing gases (for advanced chefs only!)

• Use the resulting transmission in a numerical approximation to the integral in Eq. 4.11,4.12
or 4.13 in each band to get the band-averaged fluxes.

• Sum up the fluxes in each band to get the total flux

• Serve up the fluxes to the rest of the climate model and enjoy

In the typical climate simulation application, one is given a list of values of temperature
and greenhouse gas concentrations tabulated on a finite grid of pressure levels pj for j = 0, ...N ,
and one must compute the fluxes based on this information. Either of Eq. 4.11 or 4.12 provides a
suitable basis for numerical evaluation when one is working from atmospheric data tabulated on
a grid. In writing down the approximate expressions for the flux, we will adopt the convention
that j = 0 at the top of the atmosphere and that j = N represents the ground. We shall use the
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superscript (k) to refer to quantities averaged or integrated over the band k, centered on frequency
ν(k) and having width ∆(k). Let’s define the gridded quantities:

Bj ≡ B(ν(k),
1
2
(Tj + Tj+1))∆(k)

T̄
(k)
ij ≡ T̄(k)(pi, pj)

eij ≡ T̄
(k)
ij − T̄

(k)
i(j+1)

(4.85)

The trapezoidal-rule approximation to the the expression for upward flux in band (k), based on
Eq. 4.11, is then simply

I
(k)
+ (pi) = I

(k)
+,sT̄

(k)
iN +

N∑
j=i

Bjeij (4.86)

The expression for the downward flux follows a similar form. Bj is the blackbody emission from
layer j, and the flux at a given level is a weighted sum of the emissions from each layer below (for
upward flux) or above (for downward flux) layer i. The weighting coefficient eij characterizes the
joint effects of the emissivity at layer j and the absorptivity by all layers between i and j.

Exercise 4.4.3 Write down the analogous trapezoidal-rule approximation to I−

Exercise 4.4.4 Write down analogous trapezoidal-rule approximations to I+ and I− based on the
form of the solution given in Eq. 4.12. What would be the advantages of using this form of
solution?

To implement Eq. 4.86 and its variants as a computer algorithm, one generally writes a
function which computes the transmission between levels pi and pj . The rest of the algorithm is
independent of the form this function takes, and so one can easily switch from one representation
to another (e.g. Malkmus to exponential sums) by simply switching functions. One can equally
easily use different representations for different bands. The transmission function requires as
arguments the transmission parameters for the band under consideration (e.g. R and S parameters
for Malkmus, or the H distribution for exponential sums), as well as enough information to compute
the equivalent path. For a well-mixed greenhouse gas, if we are ignoring temperature scaling effects
the equivalent path is simply qG

1
2 |(p

2
1−p2

2)|/(pog cos θ̄), and one can simply make the concentration
qG and the pressures p1 and p2 arguments of the transmission function. For an inhomogeneous path,
arising when qG varies with height or one needs to take into account temperature scaling which also
varies in height, the path is determined by an integral. In this case, it is inefficient to recompute
the path from scratch each time. Since the equivalent path can be computed incrementally using
`(p1, p2 + δp) = `(p1, p2) + `(p2, p2 + δp), it is better to use the equivalent path as an argument
to the transmission function, and compute the path from layer i to each layer j iteratively in the
same loop in Eq. 4.86 where the weighted emission is computed.

In the preceding algorithm, we have used exponential sums to represent the transmission
function appearing in the integral form of the solution to the Schwartzschild Equations. How-
ever, because the equations are linear in the fluxes, and because the exponential sum method is
a weighted sum of calculations for a number of different absorption coefficients, exactly the same
results can be obtained by organizing the calculation in a quite different way. Namely, instead of
working from the integral form of the solution, we can work directly with a set of independent
Schwartschild equations (Eq. 4.8) – one for each κ going into the exponential sum for a given
band; as usual, the band would be chosen narrow enough that B(ν, T ) could be assumed inde-
pendent of frequency within the band, so we wouldn’t need to know anything about which set of
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wavenumbers each κ correponded to. With a 10-term exponential sum, for example, we would
solve the Schwartschild equation for each of the 10 values of κ, then form a weighted sum of the
10 resulting fluxes. This alternate formulation is not available with band-averaged transmission
function models such as the Malkmus model. The weighted differential-equation approach offers a
number of advantages over the transmission-function approach. A single solution gives the fluxes
at all levels, making optimal use of calculations for preceding levels. This is useful when computing
heating rate profiles. Moreover, it is easy to use a high-order integrator to obtain high accuracy
with fewer levels. These two advantages make the method computationally attractive, but there
is a further advantage that is even more compelling for our purposes: it is straightforward to
extend this method to incorporate scattering, whereas it is essentially impossible to do so with
band-averaged transmission approaches. We will carry out this program in Chapter 5. One could
well ask why the weighted differential-equation approach hasn’t completely taken over the business
of radiation modelling. There is some evidence that, when scattering is unimportant, pressure and
temperature scaling can be done more accurately in band-averaged transmission models, but in
large measure the transmission models are a holdover from an earlier day when many radiation
calculations were done on paper, and when slow computers required highly tuned special approx-
imations in order to speed up the calculation. It does seem that the exponential sum (and its
close cousin the correlated-k) approach are gradually taking over. We have nonetheless chosen to
introduce the transmission function approach first, because it corresponds better to what is going
on in most existing radiation models, and because the form of the solution gives considerable direct
insight into the factors governing the fluxes at a given level.

4.4.7 Spectroscopic properties of selected greenhouse gases

Now we will provide a survey of the infrared absorption properties of a few common greenhouse
gases, with particular emphasis on the ”big 3” that determine much of climate evolution of Earth,
Mars and Venus from the distant past through the distant future: CO2, H2O and CH4. This
section will deal only with that part of absorption that can be identified as being caused by
nearby spectral lines associated with energy transitions of the molecule in question; the continuum
absorption which is not so directly associated with spectral lines will be discussed separately.
Although CH4 is a greenhouse gas on Titan, most of its contribution there comes from continuum
absorption rather than its line spectrum.

Although we focus on some of the more conventional examples, the reader is encouraged to
keep an open mind with regard to what might be a greenhouse gas. At present, NO2 and SO2

do not exist in sufficient quantities on any known planet to be important as a greenhouse gas,
but with different atmospheric chemistries occuring in the past or on as-yet undiscovered planets,
the situation could well be different. For that matter, things like SiO2 that we consider rocks on
Earth could be gases and clouds on ”roasters” – extrasolar gas giants in near orbits – and there
one ought to give some thoughts to their effect on thermal infrared.

When interpreting the absorption spectra to be presented below, it is useful to keep the
Planck function in mind. Absorption is not very important where there is little flux to absorb, so the
relevant part of the absorption curve varies with the temperature of the planet under consideration.
For Titan at 100K, 3

4 of the emission is at wavenumbers below 350 cm−1. For Earth at 280K , 3
4

of the emission occurs below 1000 cm−1. Mars is slightly colder, and the threshold wavenumber
is therefore a bit less. For Venus at 737K, 3

4 of the emission is below 2550 cm−1, but moreover
the flux beyond this wavenumber amounts to over 4000 W/m2. This near-infrared flux is vastly
in excess of the mere 170W/m2 of absorbed solar radiation which maintains the Venusian climate.
For Venus one needs to consider the absorption out to higher wavenumbers than for Earth or Mars,
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Figure 4.17: The minimum, 25th percentile, median, 75th percentile, and maximum absorption
coefficients in bands of width 50 cm−1, computed for CO2 in air from spectral line data in the
HITRAN database. The left panel shows results at an air pressure of 100mb, whereas the right panel
gives results at 1bar. Both are calculated at a temperature of 260K.

and given the large fluxes involved and the huge mass of CO2 present, exquisite attention to detail
and to the effect of weak lines that can normally be ignored is required. For the aforementioned
roaster planets, the ”thermal” emission extends practically out to the visible range.

An ideal greenhouse gas absorbs well in the thermal infrared part of the spectrum but is
transparent to incoming solar radiation. The following survey concentrates on thermal infrared
– the part of the spectrum that is involved in OLR– but it should be remembered that some of
the gases discussed, such as Methane, absorb quite strongly in the solar near-infrared spectrum.
This can compromise their effectiveness as greenhouse gases when they reach concentrations high
enough that the solar absorption becomes significant. Even the weaker solar absorption from CO2

and H2O can affect the thermal structure of atmospheres in significant ways. The implications of
real-gas solar absorption will be taken up in more detail in Chapters 5 and 7.

Carbon Dioxide

We have already introduced a fair amount of information about the absorption properties of CO2

but here we will present the data in a more systematic and general way, which will make it easier
to compare CO2 with other greenhouse gases. In a line graph of a wildly varying function like the
absorption, such as shown in Figure 4.7, only only sees the maximum and minimum defining the
envelope of the absorption. There is no useful information about the relative probabilities of the
values in between. To get around these problems, we divide up the spectrum into slices of a fixed
width ( 50 cm−1 in the results presented throughout this section), and then compute the minimum,
maximum, median and the 25th and 50th percentiles of the log of the absorption in each band.
By plotting these statistics vs. wavenumber, it is possible to present a fairly complete picture of
the probability distribution of the absorption. To make the absorption data easier to interpret, we
exponentiate the median , quartiles, min and max, and plot the resulting values on a logarithmic
vertical axis. Plots of this sort for CO2 at a temperature of 260K are shown in Figure 4.17. The
left panel is computed at a pressure of 100mb while the right panel is computed at 1000mb. Both
results are for air-broadened lines.
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For Earthlike and Marslike temperatures, only the lower frequency absorption region, from
about 400 − 1100cm−1 affects the OLR, since there is little emission in the range of the higher
frequency band. For Earth, the higher frequency band can contribute to Solar absorption, since
the Solar radiation reaching the Earth in that part of the spectrum amounts to 7.2W/m2 (or about
3W/m2 at the orbit of Mars). However, most of the absorption of Solar near-infrared, whether by
water vapor or CO2, occurs at higher frequencies. Venus, however, has significant surface emission
in the range of the higher frequency group, which therefore has a significant effect on that planet’s
OLR.

The absorption spectrum depends on temperature and pressure, and on whether the lines
are broadened by collision with air or by collisions with molecules of the same type (e.g. CO2

with CO2 in the present case); rather than present page upon page of graphs, the strategy is to
show the results for a single standard temperature and pressure, and make use of appropriate
temperature and pressure weighted equivalent paths to apply the standard absorption to a wider
variety of atmospheric circumstances. We will adopt T = 260K, p = 100mb and air-broadening as
our standard conditions when discussing other greenhouse gases in this section. The comparison of
the two panels of Figure 4.17 illustrates the nature of the pressure scaling. Increasing the pressure
by a factor of 10 shifts the minimum, median and quartiles upward by a similar factor. The main
exception to the scaling is the maximum absorption in each band, which is reduced and becomes
more tightly clustered to the median. This is the expected behavior, since increased pressure
reduces the absorption near the centers of absorption lines. Since this part of the spectrum is
rare, and absorbs essentially everything hitting it anyway, the errors in pressure scaling near the
line centers are of little consequence. A bit of numerical experimentation indicates that the linear
pressure scaling works quite well for pressures below 1 or 2 bars. At higher pressures (certainly by
10 bar) the lines overlap to such an extent that the whole probability distribution collapses on the
median, in which case the absorption can be described as a smooth function of the wavenumber,
and loses its statistical character. The other gases to be discussed have similar behavior under
pressure, and so we will not repeat the description separately for each gas.

To understand a planet’s radiation balance, the main thing we need to understand is where
in the spectrum the atmosphere is optically thick, and where it is optically thin. Pressure exerts by
far the strongest modifying influence on the standard-state absorption coefficients given in Figure
4.17. Hence, we will first discuss the effect of CO2 on the optical thickness of several planetary
atmospheres in terms of the 260K air-broadened coefficients using pressure-adjusted paths. Later
we will make a few remarks about how self-broadening and temperature affect the results.

The strong line pressure-weighted equivalent path for a well mixed greenhouse gas with
specific concentration q is ` = 1

2q(p2
1−p2

2)/(pog cos θ̄). If we take the reference pressure po = 100mb,
the equivalent paths can be multipled by the absorption coefficients in the left panel of Figure 4.17
to obtain optical thickness. Some typical values of the equivalent path are given in Table 4.1.
Although Mars at present has much more CO2 per square meter in its atmosphere than modern
Earth, the equivalent paths are quite similar in the two cases because the total pressure on Mars
is so much lower. For Earth and Mars temperatures only the lower frequency absorption group is
of interest, and within this group it is only the dominant spike in absorption near 675cm−1 that
contributes significantly to the absorption. Both atmospheres have optical thicknesses exceeding
unity within the wavenumber band from roughly 610 − 750cm−1 and are optically thin outside
this band. The weak absorption shoulder occurring to the high-wavenumber side of 870cm−1

has little effect for modern Earth or Mars. For any given wavenumber range, the 10% of the
atmosphere nearest the ground (i.e. the lowest 100mb on Earth) is one fifth as optically thick as
the atmosphere as a whole, meaning that a substantial part of the back-radiation of infrared to the
surface attibutable to CO2 comes from the lowest part of the atmosphere. In contrast, because
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Mod. Earth Early Earth Mod. Mars Early Mars Venus
Whole atm 47. 15000. 30. 106 109

Bottom 10% 9. 2900. 5. 2 · 105 2 · 108

Top 10% .5 160. .3 104 107

Top 1% .005 1.5 .003 100. 105

Table 4.1: Pressure-weighted equivalent paths for various planetary situations, in units of kg/m2.
The weighted path is based on a 100mb reference pressure, so these paths are intended to be used
with the absorption coefficients in the left-hand panel of Figure 4.17 . A mean slant path cos θ̄ = 1

2
is assumed. The Modern Earth case is based on 300ppmv CO2 in a 1bar atmosphere, while the
Early Earth case assumes 10% (molar) CO2 in a 1bar atmosphere. Modern Mars is based on a
10mb pure CO2 atmosphere, while Early Mars assumes a 2bar pure CO2 atmosphere. The Venus
case consists of a 90bar pure CO2 atmosphere.

of low pressure aloft, the uppermost 10% of the atmosphere, which may loosely be thought of
as the stratosphere, is comparatively optically thin. If CO2 were the only factor in play, the
greenhouse effect of the present Earth and Mars atmospheres would be quite similar. The two
planets are rendered qualitatively different primarily by the greater role of water vapor in the
warmer atmosphere of modern Earth, and by differences in vertical temperature structure between
the two atmospheres (arising largely from differences in solar absorption).

On Early Earth – either during the high CO2 phase after a long-lived Snowball, or during
the Faint Young Sun period – the CO2 may have been 10% or more of the atmosphere by molar
concentration. In this case, the equivalent paths are vastly greater than at present. The Earth
atmosphere in this case is optically thick from about 520− 830cm−1, and the higher wavenumber
shoulder just barely begins to be significant. It becomes rapidly more so as the CO2 molar concen-
tration is increased beyond 10% . This is good to keep in mind when doing radiation calculations
at very high CO2, since many approximate radiation codes designed for the modern Earth only
incorporate the effect of the principal absorption feature centered on 675cm−1. Even with such
high CO2 concentrations, the atmosphere is optically thick in only a limited portion of the spec-
trum, so that the net greenhouse effect will be modest unless other greenhouse gases come into
play. This remark is particularly germane to Snowball Earth, where the cold temperatures allow
little water vapor in the atmosphere. Without help from water vapor, CO2 has only limited power
to warm up a Snowball Earth to the point of deglaciation.

On a hypothetical Early Mars with a 2bar pure CO2 atmosphere, the equivalent path is
orders of magnitude greater than the Early Earth case. This renders the atmosphere nearly opaque
within the wavenumber range 500 − 1100cm−1. However a great deal of OLR can still escape
through the CO2 window regions, so continuum absorption, water vapor and other greenhouse
gases will play a key role in deciding whether the gaseous greenhouse effect can explain a warm,wet
Early Mars climate.

Since the equivalent path assumes absorption increases linearly with pressure, the equivalent
paths given for the bottom 10% and for the entirety of the Venus atmosphere yield overestimates of
the true optical depths, given that the increase of absorption with pressure weakens substantially
above 10bars. Even assuming that the equivalent paths are overestimated by a factor of 10, the
implied optical depths for the lowest 9bars of the Venus atmosphere, and for the entire Venus
atmosphere, remain so huge that these layers can be considered essentially completely opaque to
infrared outside the CO2 window regions. In fact even the top 1bar ( about 1%) of the Venus
atmosphere has an optical thickness greater than unity throughought the 500 − 1100cm−1 and
1800 − 2500cm−1 spectral regions. Within these regions, essentially all the OLR comes from the
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relatively cold top 1bar of the atmosphere.

The window region, where CO2 has no absorption lines, presents a challenge to the expla-
nation of the surface temperature of Venus, particularly since the peak of the Planck function
for the observed Venusian surface temperature lies in this region. In fact, if the 1200− 1700cm−1

band were really completely transparent to infrared, then emission through this region alone would
reduce the Venus surface temperature to a mere 355K (assuming a globally averaged absorbed so-
lar radiation of 163W/m2). Some energy also leaks out through the low frequency window region,
which would reduce the temperature even further. We must plug the hole in the spectrum if we are
to explain the high surface temperature of Venus. The high altitude sulfuric acid clouds of Venus
play some role, by reflecting infrared back to the surface; there may also be some influence of the
less common isotopes of CO2, since asymmetric versions of the molecule (e.g. made with one 16O
and one 18O) can have lines in the window region. The principal factor at play is the continuum
absorption to be discussed in Section 4.4.8. Figure 4.17 was computed taking into account only the
relatively nearby contributions of each absorption line (within roughly 1000 line widths), whereas
collisions can allow some absorption to occur much farther from the line centers. This far-tail
absorption spills over into the window region, particularly at high pressure. It cannot be reliably
described in terms of the Lorentz line shape, and therefore requires separate consideration.

The difficulties posed by Venus do not end with the window region¿ For planets having
Earthlike temperatures, the thermal radiation beyond 2300cm−1 is insignificant, so we needn’t
be too concerned about the absorption properties there. However, for a planet with a surface
temperature of 700K, the ground emission on the shortwave side of 2300cm−1 is 3853 W/m2,
compared to under 200W/m2 of absorbed solar radiation for Venus. In these circumstances it
simply won’t do to assume the atmosphere transparent at high wavenumbers The HITRAN spectral
database is a monumental accomplishment, but it is still rather Earth-centric, and lacks the weak
lines needed to deal with high temperature atmospheres; there may also be continuum absorption
in the shortwave region, especially at high pressures. In order to deal with the high wavenumber
part of the Venus problem, one needs to employ specialized high-temperature CO2 databases,
which are less verified and more in a state of flux than HITRAN. Among specialized databases in
use for Venus, the HITEMP database (described in the supplementary reading at the end of this
Chapter) is particularly convenient, because it at least uses the same data format as HITRAN. It
will be left to the reader to explore the use of this database. Suffice it to say that there appears
to be sufficient absorption in the high wavenumber region to raise the radiating level to altitudes
where the temperature is low enough that one may not need to consider shortwave emission in
computing OLR.

The preceding discussion was based on air-broadened absorption at 260K, whereas self-
broadened data would be more appropriate to the pure-CO2 atmospheres and in all cases one
must think about whether the increase of line strength with temperature substantially alters the
picture presented. A re-calculation of Figure 4.17 for self-broadened pure CO2 indicates that the
self-broadened absorption is generally about 30% stronger than the air-broadened case,though there
are a few bands in which the enhancement is as little as 13%. This is quantitatively significant, but
the enhancement factor is too small to alter the general picture presented above. The temperature
dependence can have a more consequential effect. In the strong line approximation, valid away
from line centers, the temperature affects the absorption only in the form of the product of line
strength and line width, S(T )γ(p, T ), which yields a temperature dependence of the form κCO2 ∼
exp(−T ∗/T ) for some coefficient T ∗. The coefficient differs from line to line, but we can still
attempt to fit this form to the computed temperature dependence of the median absorption within
each 50cm−1 band. The result is shown in Figure 4.18. This still only gives an incomplete picture
of the effect of temperature on absorption, since the other quartiles may have different scaling
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Figure 4.18: Left panel: Temperature dependence coefficient for air-broadened CO2 at 100mb.
The coefficient is computed for the median absorption in bands of width 50cm−1, as shown in
Figure 4.17. The median absorption within each band increases with temperature in proportion
to exp(−T ∗/T ). Right panel: The ratio of self-broadened to air-broadened median absorption
coefficients.

coefficients. Within an exponential-sum framework, however, one can do little else that pick a
base temperature most appropriate to the planet under consideration, compute the probabilility
distribution for that case,and then assume that each absorption coefficient in a band scales with
the same function of temperature. This procedure in any event gives an estimate of the magnitude
of the temperature effect. From the Figure, it is seen that the temperature dependence varies
greatly with wavenumber. It is low near the principal absorption spike at 675cm−1, with T ∗ as
low as 1000K. This value increases the absorption by a factor of 1.7 going from 260K to 300K,
and decreases absorption by a factor of 2 going from 260K to 220K. Where T ∗ = 3000K, the
corresponding ratios are 4.7 and .14 . Therefore CO2 is significantly more optically thick than our
previous estimates in the warmer-lower reaches of the present Earth atmosphere, and significantly
less optically thick in the cold tropopause regions. For the 737K surface temperature of Venus,
the absorption is enhanced by a factor of 12 when T ∗ = 1000K but by a substantial factor of 1750
when T ∗ = 3000K. This just makes an already enormously optically thick part of the atmosphere
even thicker. Outside the window regions, most of the atmosphere of Venus is in the optically thick
limit where very slow radiative diffusion transfers heat; infrared radiative cooling in the deeper
parts of the Venus atmosphere is determined almost exclusively by what is going on in the window
regions.

Water Vapor

Figure 4.19 shows the standard-state absorption spectrum for water vapor. Unlike CO2, the H2O
molecule, which has more complex geometry, has lines throughout the spectrum, so there is no
completely transparent window region. Water vapor nonetheless has two window regions where
the absorption is very weak; it will turn out that continuum absorption from far tails excluded
from the computation in the figure substantially increases the absorption in these window regions
(Section 4.4.8). The peak absorption coefficient for water vapor has a similar magnitude to that
for CO2, but water vapor absorbs well over a far broader portion of the spectrum than CO2. In
particular, the H2O absorption has a peak within both the 1000cm−1 and longwave window regions
of CO2. This critically affects the greenhouse warming on Earth and on Early Mars, but it plays
little role on present-day Venus, which has little water vapor in its atmosphere. It should not be
concluded that water vapor overwhelms the greenhouse effect of CO2, however. It would be more
precise to say that the water vapor greenhouse effect complements that of CO2. CO2 absorbs
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Figure 4.19: As in Figure 4.17, but for H2O. The continuum regions marked on the figure are
regions where the measured absorption substantially exceeds that computed from the spectral lines.

strongly near the peak of the Planck function for Earthlike temperatures, but the water vapor
absorption is nearly two orders of magnitude weaker there. Further, for Earthlike planets, water
vapor condenses and therefore disappears in colder regions of the planet; it is only the long-lived
CO2 greenhouse effect that can persist in cold parts of the atmosphere.

On a planet without a substantial condensed water reservoir, water vapor could be a well-
mixed noncondensing greenhouse gas much like CO2 on modern or early Earth. In most known
cases of interest, though, atmospheric water vapor is in equilibrium with a reservoir –an ocean
or glacier – which fills the atmosphere to the point that the atmospheric water vapor content is
limited by the saturation vapor pressure. The prime cases of interest are water vapor feedback on
Earth and on Early Mars, and the runaway greenhouse on Early Venus. The runaway greenhouse
is also relevant to the ultimate far-future fate of the Earth, and the evolution of hypothetical
water-rich extrasolar planets. The status of water vapor as a greenhouse gas whose concentration
is limited,via condensation, by temperature does not derive from any special properties of water.
One tends to focus on a role of this sort for water simply because planets that are ”habitable”
to the only example of life with which we are presently familiar seem to require a planet with
liquid water and an operating temperature range in which the saturation vapor pressure is high
enough for water vapor to be present in sufficient quantities to be active as a greenhouse gas. On
present and past Mars, as well on a hypothetical early Snowball Earth, CO2 can be limited by
condensation, and on Titan today CH4 condenses, while NH3 and other gases have condensation
layers on the gas giant planets.

First, let’s think about the effect of water on OLR, supposing that the atmosphere is sat-
urated at each altitude. The water vapor greenhouse effect is determined by a competition be-
tween two factors. Water vapor causes the greatest optical thickness near the ground, where both
pressure-broadening and saturation vapor pressure are highest. However, a strong greenhouse ef-
fect requires optical thickness at higher altitudes, where the temperature is substantially colder
than the surface, in order to reduce the radiating temperature of the planet. For this reason, water
vapor in the mid to upper troposphere is more important than water vapor near the ground. Con-
sider a typical Earth tropical case, on the moist adiabat with 300K temperature near the ground.
If the low level air is saturated, then the equivalent path of the lowest 100mb of the atmosphere
is about 400kg/m2. This is sufficient to make the lower atmosphere optically thick except within
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the window regions, so that the atmosphere would radiate to the ground at the near-surface air
temperature except within the windows. Most of the infrared cooling of the ground occurs in
the windows, but we’ll see eventually that at temperatures of 300K and above, the continuum
substantially closes off the window region as well. This near-surface opacity doesn’t much affect
the OLR, however. Near 400mb, the temperature is about 260K,and in saturation the equivalent
path between 400mb and 500mb is only 25kg/m2. This relatively small amount of water vapor
is still sufficient to make the layer optically thick between 1350cm−1 and 1900cm−1, as well as
on the low frequency side of 450cm−1. This substantially reduces the OLR. At the tropopause
level, in contrast, the temperature is about 200K, the pressure is 100mb, and the equivalent path
from 100mb to 200mb is only .01kg/m2. At such low concentrations, water vapor is optically thin
practically throughout the spectrum. At lower surface temperatures, the dominant greenhouse
effect of water vapor comes from correspondingly lower altitudes. With a 273K surface temper-
ature, the 400mb temperature on the dry air adiabat is only 210K, and the water vapor opacity
is inconsequential there. One has to go down to about 600 − 700mb, where the path is about
2kg/m2, to get a significant water vapor greenhouse effect. On a low CO2 Snowball Earth soon
after freeze-up, where the tropical surface temperature is under 250K, the water vapor greenhouse
effect is essentially negligible. The water vapor greenhouse effect only starts to play a role when
the planet has warmed to the point that the tropical temperatures approach the melting point.

As was the case for CO2, the absorption coefficient for water vapor decays roughly ex-
ponentially with distance in wavenumber space from each peak of absorption. This has similar
consequences for OLR as were discussed previously in connection with CO2. Because of the ex-
ponential envelope of absorption, doubling or halving the water vapor content of a layer of the
atmosphere has approximately the same effect on the optical thickness of that layer regardless of
whether the base amount being doubled or halved is very large (say 200 kg/m2) or very small
(say 2 kg/m2). There may not be much water to work with in the Earth’s mid troposphere, but
nonetheless halving or doubling the amount would have a significant effect on OLR. This remark
is particularly significant because there are dynamical effects which in fact keep the Earth’s mid-
troposphere substantially undersaturated (see Chapter 7). Although there are regions with relative
humidity as low as 10%, it would still significantly increase the OLR if the relative humidity were
reduced still more to 5%, and conversely it would significantly decrease the OLR if the relative
humidity were increased to 20%. Because of the spectral position of the absorption peaks relative
to the shape of the Planck curve, the effect of water vapor concentration on OLR is not as precisely
logarithmic as is the case for CO2. Nonetheless, it is fair to say that the change in water vapor
content relative to the amount initially present gives a more true idea of the radiative impact of
the change than would the change in the absolute number of kilograms of water present in a layer.

Figure 4.20 shows the temperature dependence and the ratio of self to air-broadened ab-
sorption for water vapor. The general range of temperature sensitivity is much the same as it
was for CO2. However, whereas self-broadened absorption for CO2 is only a few tens of percents
stronger than air-broadened absorption, the self-broadened H2O absorption is fully five to seven
times stronger than the air-broadened case. This is extremely important to the runaway green-
house, which involves portions of the atmosphere which consist largely of water vapor. Moreover,
when a species has a molar concentration in air of, say, 10% or less one wouldn’t ordinarily have
to worry much about self-broadening, since collisions with air are so much more common than
self-collisions. However, because of the great amplification of self-broadened absorption for wa-
ter vapor, the self-broadening in fact starts to become dominant even at molar concentrations of
around 10%. At the Earth’s surface, this concentration is achieved at a temperature of 320K. With
a dry air partial pressure of 100mb, this concentration would be achieved at temperatures near
280K; this situation is relevant to a hot planet on the verge of a runaway greenhouse. The strong
enhancement of self-broadened absorption relative to air-broadened absorption is far in excess of
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Figure 4.20: Left panel: Temperature dependence coefficient for air-broadened H2O at 100mb, as
defined in Fig. 4.18. Right panel: Ratio of self-broadened to air-broadened median absorption for
H2O at 100mb and 260K. As usual, medians are computed in bands of width 50cm−1.

what would be anticipated from simple effects associated with the different molecular weights of
the colliders. The sensitivity to the nature of the colliding molecule raises interesting questions
about the effect of collisions with other molecules. Would CO2 broadened coefficients be more like
the air-broadened or self-broadened case? The answer to this question has some impact on the
climates of Early Mars and Early Earth, which are often assumed to have had substantial amounts
of CO2 in their atmospheres. Unfortunately, laboratory measurements bearing on the subject are
hard to come by.

Next we turn our attention to aspects of the absorption which govern the runaway green-
house effect for a planet with a water-saturated atmosphere. Specifically, we revisit the question
of the Kombayashi-Ingersoll limit, which is the limiting OLR such a planet can have in the limit
of large surface temperature. As discussed for the grey gas case in Section 4.3.3, the limiting OLR
is approximately determined by the temperature at the pressure level where the optical thickness
between that level and the top of the atmosphere becomes unity. For a grey gas this characteristic
pressure was independent of wavenumber, whereas for a real gas it is quite strongly wavenum-
ber dependent. To keep things simple, we’ll consider a saturated pure water vapor atmosphere.
In this case, if the temperature at a given altitude is T , the corresponding pressure is psat(T ),
determined by Clausius-Clapeyron. The equivalent path from this altitude to zero pressure is
aself

1
2psat(T )2/(pog cos θ̄), where po is the standard reference pressure (100mb for use with Figure

4.19) and aself is the ratio of self-broadened to air-broadened absorption (about 6). By using
this path together with the absorption coefficients in Figure 4.19, we can estimate the maximum
effective radiating temperature as a function of wavenumber. Based on the median absorption in
each band, the radiating temperature varies from about 245K at 100cm−1 to 278K at 500cm−1 to
350K at the valley of the window region near 1000cm−1. The high values of radiating temperature
in the window region lead to large estimates of the Kombayashi-Ingersoll limit. As a crude esti-
mate, if we assume that the planet radiates at 350K in the window regions between 544 and 1314
cm−1, and on the high wavenumber side of 1950cm−1, then the OLR would be about 520W/m2

even if the planet didn’t radiate at all in the rest of the spectrum. The Kombayashi-Ingersoll limit
is strongly affected by the absorption in the window regions, and we will see in Section 4.4.8 that
the absorption here is dominated by a continuum which is not captured by the nearby line contri-
bution. The estimate of the Kombayashi-Ingersoll limit for H2O (and CO2) will be completed in
Section 4.7, after we have discussed the continuum.
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Methane

Figure 4.21 shows the standard-state absorption spectrum for methane. From the standpoint of
OLR on Modern and Early Earth, and perhaps on Early Mars, the most important absorption
feature is that near 1300 cm−1, which occurs in a part of the spectrum where water vapor and
CO2 absorption are weak, but where the Planck function still has significant amplitude at Earthlike
temperatures. In contrast with water vapor, the very long wave absorption (below 1000 cm−1) is
so weak that it does not significantly affect OLR in any atmosphere likely to have existed on an
Earthlike or Marslike planet. Titan has extremely large amounts of methane in its atmosphere,
which could in principle make the very longwave group important. Even there, however, the
weakening of the absorption due to the very cold temperatures makes this absorption group fairly
insignificant. For atmospheres containing appreciable amounts of oxygen, methane oxidizes rather
quickly to CO2, so it is hard to build up very large concentrations. The Earth’s pre-industrial
climate had about 1ppmv of methane in it, and the intensive agriculture of the past century
may eventually come close to doubling this concentration. The associated equivalent paths are
quite small – on the order of .06kg/m2. For paths this small, Earth’s atmosphere has an optical
thickness of only .14 based on the median absorption coefficient occurring the 1300cm−1 peak.
For methane paths typical of oxygenated atmospheres, one gets significant absorption only from
the upper quartile of absorption coefficients, and a short distance from the dominant peak one
only gets significant absorption very near the line centers. In this case, the ditch in OLR dug by
methane is a very narrow feature centered on 1300cm−1. In an anoxic atmosphere, as Earth’s is
likely to have been earlier than about 2.7 billion years ago, the rate of methane destruction is much
lower, and it is believed that production of methane by methanogenic (methane-producing) bacteria
could have driven methane concentrations to quite large values. With 100ppmv of methane in an
Earthlike atmosphere, the equivalent path is about .6kg/m2, and based on the median absorption
coefficient the atmosphere becomes optically thick from about 1200 − 1400cm−1. If the methane
concentration builds up to 1% of the atmosphere, then the equivalent path is nearly 600kg/m2,
and the atmosphere becomes optically thick from 1150− 1750cm−1; for such high concentrations,
the shoulder to the right of the absorption peak starts to become important. There are also some
speculations that abiotic processes could have led to high Methane concentrations on Early Mars,
or on the prebiotic Earth.

Beyond what is shown in Figure 4.21, Methane has strong absorption bands that extend
well into the Solar near-IR. These are not terribly important at concentrations up to a few hundred
ppmv in a 1bar atmosphere, but when Methane makes up a percent or so of the atmosphere, it can
absorb most of the incident solar energy between 2500 and 9000 cm−1. At higher concentrations,
significant absorption can extend even into the visible range.

It is often said that, molecule for molecule, CH4 is a better greenhouse gas than CO2.
However, this is more a reflection of the relative abundances of CH4 and CO2 in the present
Earth atmosphere than it is a statement about any intrinsic property of the gases; in fact, the
absorption coefficients for the two gases are quite similar in magnitude, and CH4 absorbs in a
part of the spectrum that is less well placed to intercept outgoing terrestrial radiation than is the
case for CO2. The high effectiveness of CH4 relative to CO2 in the present atmosphere of Earth
stems from the fact that currently there is rather a lot of CO2 in the air (380ppmv and rising)
but rather little CH4 (1.7ppmv and also rising). In a situation like this, one has already depleted
infrared of those frequencies that are most strongly absorbed by CO2, so when adding CO2 one
is adding ”new absorption” in spectral regions where the absorption is relatively weak. Hence, it
takes a large amount of the gas to have much radiative effect. In contrast, when starting with
a small amount of CH4, when one adds more, one adds ”new absorption” where the absorption
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Figure 4.21: As in Figure 4.17, but for CH4.
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Figure 4.22: Left panel: Temperature dependence coefficient for air-broadened CH4 at 100mb, as
defined in Fig. 4.18. Right panel: Ratio of self-broadened to air-broadened median absorption for
CH4 at 100mb and 260K. As usual, medians are computed in bands of width 50cm−1.

coefficient is quite strong, since the strongly absorbing part of the spectrum is not yet depleted.
This behavior depends crucially on the lack of significant overlap between the Methane and CO2

absorption regions.

The temperature scaling coefficient for CH4 is shown in Figure 4.22. It is in the same general
range as for the cases discussed previously. The ratio of self to air broadening for CH4 is similar
to that for CO2, throughout the spectral range of most importance for OLR. In the solar near-IR
the self-broadened absorption can be nearly twice the air-broadened absorption. For Methane,
the self-broadening is mostly of academic interest, since the methane concentration is too low for
self-collisions to be significant in atmospheres encountered or envisioned so far. Titan and similar
cryogenic atmospheres are potentially an exception to this remark, but there the absorption is
dominated by a continuum that is not clearly related to the absorption lines under consideration
here.

Because Titan has a surface temperature on the order of 100K, the peak of the Planck
function occurs at about the third of the wavenumber where the peak is for Earthlike tempera-
tures. In consequence, there is little thermal emission in the vicinity of the dominant 1300cm−1

absorption group. It is only the longwave absorption group that is potentially of interest. The
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lower atmosphere of Titan contains up to 20% CH4, which with Titan’s low surface gravity yields
an actual (not equivalent) mass path of nearly 15000kg/m2. However, due to the strong reduction
of line strength with temperature, the median absorption is well under 10−6m2/kg in the longwave
group, even when broadened by a pressure of 1.5bar. The radiative effect of Methane on Titan
arises mainly from a collisional continuum of the sort described in Section 4.4.8.

4.4.8 Collisional continuum absorption

Diatomic molecules and general considerations

A Nitrogen molecule N2 in isolation does not interact to any significant extent with infrared light;
one might think that collisions do not change this picture, as N2 has no lines to be broadened by
collisions. Nonetheless, during the time a collision is taking place the pair of colliding molecules
momentarily behaves somewhat like a more complex four-atom molecule, which has transitions
that can indeed absorb and emit infrared radiation. This leads to collision-induced absorption,
whose associated absorption coefficient is generally a smooth function of wavenumber. Because of
the lack of line structure, such absorption is referred to as a continuum. There are many possible
processes through which collisions can induce absorption. The collision can impart a temporary
dipole moment to a rotation or vibration that ordinarily had none, allowing it to absorb or emit a
photon. The collision can break a symmetry, allowing transitions that are otherwise ”forbidden”
by symmetry principles. Colliding molecules can form dimers, which are short-lived complexes
which nevertheless persist long enough to have radiatively active transitions not present in the
colliding molecules. Most of the ”non-absorbing” diatomic molecules, including N2 and H2, exhibit
significant collision-induced continuum absorption at sufficiently high densities. These are mostly
associated with the induced-dipole mechanism, and therefore can to some extent be anticipated on
the basis of the underlying transitions of the diatomic molecule.

Collision-induced absorption can be thought of as a trinary chemical reaction involving the
two colliding molecules and a photon. The rate of ”reaction” (i.e. absorption) is proportional to
the product of the concentrations of the two colliding species with the photon concentration, the
latter being proportional to the radiation flux. The absorption coefficient is the rate constant for
the reaction. Unlike the case of collision-broadened line absorption, in collision-induced absorption
there is no physical distinction between the ”absorbing” molecule and the ”perturbing” molecule.
Both are equal partners in the process allowing absorption or emission of a photon. For this rea-
son, it is most natural to describe collision-induced absorption in terms of a binary absorption
coefficient, which expresses the proportionality between the product of the concentrations of the
two colliding species and the rate of absorption of radiation. Nonetheless, in order to facilitate
comparison with the previously defined line absorption coefficients, and in order to make it eas-
ier to incorporate collisional continuum absorption in radiation calculations which also take into
account line absorption, it is convenient to characterize the collision-induced absorption by mass-
specific absorption coefficients in which one of the colliding molecules is arbitrarily designated the
”absorber,” whose absorption is enhanced in proportion to the partial pressure of the ”collider”.
For example, for an N2-H2 collision in a box of gas with uniform temperature T and uniform N2

partial pressure p, the optical thickness can be expressed as

τ =
pN2

po
κH2(ν, po, T )`H2 (4.87)

where `H2 is the mass path of Hydrogen in the box, in kg/m2, and po is a standard pressure. The
coefficient κH2 has dimension m2/kg and can be used in precisely the same way as the absorption
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Figure 4.23: The N2 − N2 and N2 − H2 collision-induced continuum absorption coefficients as a
function of temperature (indicated on curves). The coefficients are given at an N2 partial pressure
of 100mb.

coefficients we defined earlier for use with the line spectrum. To relate this to the binary absorption
coefficient commonly defined in the spectroscopy literature, let z be the length of the path in meters,
so that `H2 = z · pH2/(RH2T ). Then

τ =
κν,po,H2

poRH2T
pN2pH2z ≡ κH2−N2(ν, T )pN2pH2z (4.88)

which defines the binary coefficient in the case where the collider amounts are specified as partial
pressures. It is more common to specify the collider amounts in terms of densities or molar densities,
but the alternate forms can be readily derived from the preceding by use of the ideal gas law.

Continuum absorption may be difficult to understand from a priori physical principles, and
difficult to measure accurately in the laboratory, but by definition the absorption coefficient for
the continuum is a smoothly varying function of wavenumber. Therefore, it is relatively easy to
incorporate into radiative transfer models. One only needs to determine the absorption coefficients
and their pressure and temperature scaling in a set of relatively broad bands, and multiply the
transmission computed from the line absorption (if any) by the corresponding exponential decay
factor.

The continuum arising from diatomic molecule collisions becomes particularly important for
dense, cold, massive atmospheres, of which Titan’s is probably the best studied example. Figure
4.23 shows the N2 −N2 and N2 −H2 collision induced absorption coefficients in the temperature
range prevailing in Titan’s atmosphere. These coefficients are based on laboratory measurements
made at somewhat higher temperatures, extrapolated to colder values using a theoretical model
with a few empirical coefficients fit to the data. (See the paper by Courtin et al. listed in the Further
Readings section of this chapter). The equivalent path for Titan based on N2 partial pressure is
about 106kg/m2, which yields a peak optical thickness of 40 for temperatures near those prevailing
at Titan’s surface. The H2 content of Titan’s atmosphere is less well constrained, but plausible
estimates suggest that this gas, too, can contribute significantly to the infrared opacity of Titan’s
atmosphere. Note that the absorption decreases sharply with increasing temperature; this is partly
due to the decrease in density with temperature, but is also affected by the shorter duration of
high-velocity collisions, which apparently are less effective at inducing a dipole moment. The
N2 −N2 continuum is unimportant for Earthlike collisions because of the higher temperatures on
Earth, and because Earth’s atmosphere is much less massive than Titan’s,per unit surface area.
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Figure 4.24: The N2 − CH4 and CH4 − CH4 collision-induced continuum absorption coefficients
at 100K, assuming a collider partial pressure of 100mb. For N2 − N2 the ”collider” is N2, while
for CH4 − CH4 the ”collider” is CH4.

Methane Continuum on Titan

Methane also significantly affects the infrared opacity of Titan’s atmosphere, though its effects on
OLR are rather less than N2 or H2 since methane is concentrated in the warmer, lower layers of
the atmosphere. Essentially all of the infrared absorption due to methane on Titan comes from
a collision-induced continuum. The N2-induced and self-induced absorption coefficients at 100K
are shown in Figure 4.24. Like the other continuum coefficients, these too become weaker with
increasing temperature. Assuming Methane to be in saturation with temperature given by the
Methane-Nitrogen moist adiabat in Titan conditions, the pressure-weighted path for self-induced
absorption is in excess of 40000kg/m2, while the equivalent path for N2-induced absorption is over
170000kg/m2. The self-absorption yields a peak optical thickness of about 5, while the foreign
absorption gives a peak optical thickness of about 20, dropping to 10 in the higher frequency
shoulder near 200cm−1

Carbon Dioxide Continuum

Given the importance of the CO2 window regions to the high-CO2 climates of Venus and Early
Mars, it is rather surprising that the CO2 continuum has been so little studied. The coefficients in
use in most models stem from limited experiments and there is little agreement on the theoretical
basis for this continuum or its temperature scaling. At the time of writing, it appears that the
subject has not been re-examined in laboratory experiments since the late 1970’s. The discussion
below is based on absorption coefficients reported in the literature cited in the Further Readings
section of this chapter.

The measured CO2 continuum absorption, rescaled to 100mb is shown in Figure 4.25. The
values shown are for collisions of CO2 in air; the self-induced continuum absorption is generally
assumed to be 1.3 times that of the foreign-induced continuum. Referring to the equivalent paths
in Table 4.1, we see that the continuum absorption is large enough to make the top one bar of
the atmosphere of Venus optically thick throughout most of the window region. The continuum
absorption is strong enough to be important in the thick atmosphere of Early Mars, but only
marginally so for the more moderate CO2 levels present on Early Earth.

When incorporating the continuum in radiation models, it may be more convenient to work
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Figure 4.25: The air-induced CO2 continuum absorption (solid lines) compared with the bandwise-
minimum absorption computed from the line spectrum (dashed lines).

from a curve-fit rather than tabulated data. The absorption coefficient for the CO2 continuum can
be fit with the function

κCO2(ν, 300K, 100mb) = exp(−8.853+0.028534ν−0.00043194ν2+1.4349·10−6ν3−1.5539·10−9ν4)
(4.89)

from 25 to 450 cm−1 and by

κCO2(ν, 300K, 100mb) = exp(−537.09+1.0886ν−0.0007566ν2 +1.8863 ·10−7ν3−8.2635 ·10−12ν4)
(4.90)

from 1150 to 1800 cm−1 where ν is measured in cm−1. The continuum absorption coefficients
weaken with increasing temperature, according to the empirical power law (300./T )n , with n = 1.7
for wavenumbers greater than 190cm−1, increasing to 1.9 at 130 cm−1, 2.2 at 70 cm−1 and 3.4 at
20 cm−1.

Water vapor continuum

Since water vapor has absorption lines throughout the spectrum, it is hard to unambiguously de-
fine the continuum. Laboratory measurements clearly show, however, that in the window regions
indicated in Figure 4.19 the net absorption is far in excess of what can be accounted for by the
contributions of nearby lines. The prevailing view currently is that this excess absorption is due to
the very far tails of the stronger absorption bands flanking the window regions, rather than dimers,
forbidden transitions, or collision-induced dipole moments. The theoretical and observational ba-
sis for this viewpoint is exceedingly weak, however. In the following we will confine ourselves to
empirical descriptions of the laboratory measurements, without reference to underlying mecha-
nisms. Comparisons with direct measurements of transmission in the Earth’s atmosphere have
confirmed that the laboratory measurements provide an adequate basis for modelling water vapor
absorption in the window regions. The laboratory measurements show that the air-broadened or
N2 broadened water vapor continuum is very weak, so that the window region absorption is by
far dominated by self-collisions of water vapor. The following discussion will therefore be limited
to self-induced absorption; the characterization of foreign-induced absorption by CO2 appears to
be an open question at present, though it is potentially of importance to water-CO2 atmospheres
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Figure 4.26: The water vapor self-induced continuum near 1000 cm−1, compared with the median
absorption coefficient computed from the Lorentz line contribution within 1000 line widths of the
line centers in the HITRAN database. The continuum curve given is based on laboratory observations
in saturation at 296K, scaled up to what they would be at a water vapor partial pressure of 100mb.
See citations in the Further Readings section of this chapter for data sources.

such as might have occurred on Early Mars.

There is some ambiguity in the spectroscopic literature as to how to define the water vapor
continuum, given that in analyzing measurements one must be careful not to be thrown off by
the strong absorption near the centers of individual lines in the window regions. Most useful
definitions of the continuum amount to reading the absorption at the minima ”between the lines.”
The results of such a measurement of the self-induced continuum are shown in Figure 4.26. The
measurements were made for water vapor in saturation at 296K, with water vapor partial pressure
of about 28mb, but have been scaled to a standard water vapor partial pressure of 100mb for the
sake of discussion. We’ll focus on the lower frequency of the two window regions, since that is
by far the most important for planetary climate calculations. Similar data exists for the higher
frequency window. From the figure, we see that the measured continuum absorption is several
orders of magnitude stronger than the typical line contribution. To get an idea of the significance
of the water vapor continuum, let’s consider a layer of air of depth z, with uniform temperature
T , within which the water vapor is at the saturation vapor pressure corresponding to T . Since the
water vapor continuum is dominated by self-collisions, it matters little what the background air
pressure is in this layer. The equivalent path for this layer is (psat(T )/po)(psat(T )/(RwT ))z; the
first factor gives the degree of pressure-induced enhancement of absorption relative to the standard,
while the secondd factor is the density of water vapor in the layer. Note that the equivalent path
is quadratic in the water vapor partial pressure. For this reason, the optical thickness in the
continuum region grows very rapidly with temperature. At 300K, then, with a layer depth of 1km
the equivalent path is 9.3kg/m2. Since the minimum absorption coefficient in the window regionis
about .1m2/kg, this path gives the layer an optical thickness of unity or more in the window
region. Since the absorption is even stronger outside the window region, at the lowest layer of the
Earth’s atmosphere acts practically like an ideal blackbody at tropical temperatures. At 310K
the equivalent path increases to 27kg/m2, so the window region closes off even more. This has
profound consequences for the runaway greenhouse. In fact, there would be essentially no prospect
for a runaway greenhouse even in Venusian conditions were it not for the water vapor continuum.

Over the range of wavenumbers shown in the figure, the water vapor continuum absorption
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can be fit by the polynomial

κH2O(ν, 296K, 100mb) = exp(12.167−0.050898ν+8.3207·10−5ν2−7.0748·10−8ν3+2.3261·10−11ν4)
(4.91)

Like the other continua, the water vapor continuum absorption becomes weaker as temperature
increases. Data on the temperature dependence is sparse, but suggests a temperature dependence
of the form (296/T )4.25. For temperatures much colder than 300K, the saturation vapor pressure
is so low that the details of the temperature dependence are unimportant. As temperature in-
creases beyond 300K, the exponential growth of saturation vapor pressure is far more important
to the optical thickness than the rather mild decline of the continuum absorption coefficient with
temperature.

Water vapor has another continuum region at shorter wavelengths, in the vicinity of 2500cm−1.
This is not important for Earthlike temperatures, but it is a very significant factor for the hot-
ter temperatures encountered in runaway greenhouse calculations. At temperatures much in
excess of 320K, there is enough emission in this region that it accounts for a significant part
of the infrared cooling if the continuum is not included. The 2500cm−1 continuum, covering
2100cm−1 ≤ ν ≤ 3000cm−1 can be represented by the polynomial fit

κH2O(ν, 296K, 100mb) = exp(−6.0055−0.0021363x+6.4723·10−7x2−1.493·10−8x3+2.5621·10−11x4+7.328·10−14x5)
(4.92)

where x = ν − 2500cm−1. The scaling in pressure and temperature can be taken to be the same
as for the longer wavelength continuum, though the experimental support for the temperature
dependence is somewhat weak.

The importance of the water vapor continuum to climate when temperatures approach or
exceed 300K is demonstrated in Figure 4.27. Here we present calculations of the spectrum of OLR
and of surface back-radiation using the exponential sum radiation code described previously, but
modified to take into account the vertical variation of water vapor concentration and the continuum.
With the continuum included, the low layer atmosphere radiates to the surface practically like
a blackbody; in fact, if one increases the surface air temperature slightly, to 310K, the back
radiation becomes indistinguishable from the blackbody spectrum corresponding to the surface
air temperature. In contrast, without the continuum, there is essentially no back-radiation in the
window region, allowing the surface to cool strongly through the window. Likewise, without the
continuum, the atmosphere can radiate to space very strongly through the window, whereas the
cooling to space is very much reduced if the continuum absorption is included. These calculations
were carried out for an Earthlike water-air atmosphere on a planet with g = 9.8m/s2. On a
planet with weaker surface gravity, the water vapor continuum would become important at lower
temperatures, because a given partial pressure corresponds to a greater mass of water. Conversely,
on a planet with stronger surface gravity, the water vapor window closes at higher temperatures.

4.4.9 Condensed substances: Clouds

Clouds are made of particles of a condensed substance, which may be in a liquid or solid (e.g.
ice) phase. The molecules of a condensed substance are in close proximity to one another, and at
typical atmospheric temperatures the collisions are so frequent that no line structure survives in
the spectrum. In consequence, the absorption coefficient for a condensed substance is generally
a very smoothly varying function of wavenumber. Absorption by condensed substances behaves
rather like the gaseous continuum absorption we discussed in the preceding section.

Water clouds are of particular interest, since they are by far the dominant type of cloud on



210CHAPTER 4. RADIATIVE TRANSFER IN TEMPERATURE-STRATIFIED ATMOSPHERES

0

0.1

0.2

0.3

0.4

0.5

0 500 1000 1500 2000 2500 3000

With Water Vapor Continuum

Surface Back Radiation
OLR
300K Blackbody Emission

Fl
ux

 d
en

si
ty

 (
W

/m
2 )

/c
m

-1

Wavenumber ( cm
-1)

0

0.1

0.2

0.3

0.4

0.5

0 500 1000 1500 2000 2500 3000

Without Water Vapor Continuum

Surface Back Radiation
OLR
300K Blackbody Emission

Fl
ux

 d
en

si
ty

 (
W

/m
2 )

/c
m

-1

Wavenumber ( cm
-1)

Figure 4.27: The spectra of surface back radiation and OLR computed using an exponential
sum radiation code including the effects of the longwave water vapor continuum (left panel) and
excluding the continuum (right panel). The calculation was done with the temperature profile
on the water-air moist adiabat corresponding to 300K surface temperature, assuming the water
vapor partial pressure to be saturated at all levels. This calculation does not take into account the
temperature variation of absorption coefficients or the enhancement of self-induced absorption in
the line contribution.

Earth. They would also occur on any world habitable for life as we know it, since such a world
would have a repository of liquid water somewhere, and condensation of water vapor somewhere
in the atmosphere would then be practically inevitable. Water clouds would also form in the
course of a runaway greenhouse on a world with a water ocean, such as the primordial Venus.
The absorption coefficient for liquid water is shown over the infrared range in Figure 4.28. For
comparison, we show the median absorption coefficient for water vapor at 100mb pressure and
260K temperature. Keep in mind that the absorption for liquid water is a true continuum, so
that, unlike the median absorption curve shown for the vapor phase, the curve for liquid water
displays the full wavenumber variability of the absorption.

We see that a kilogram of water in the liquid phase is a far better absorber than the
same kilogram in the form of vapor. Near the peak absorption wavenumbers of water vapor,
the difference can be as little as a factor of ten, but in the window regions liquid water has an
absorption coefficient many thousands of times that of water vapor. The absorption coefficient for
liquid water varies little enough that over the infrared range it can be quite well approximated
as a grey gas (or more properly, a grey liquid). In fact, with a typical absorption coefficient of
100m2/kg, it takes a layer of liquid only 10−5 meters to have unit optical thickness and to begin to
behave like a grey body. This is the depth of penetration of atmospheric infrared back-radiation
into the surface of a lake or ocean, and it is the depth whose temperature directly determines the
infrared radiation from the surface of a lake or ocean. Water ice is somewhat more transparent to
infrared than liquid water, but the general features of the behavior still apply.

Because of the nonlinearity of the exponential function which determines the amount of
absorption suffered by infrared as it passes through a number of particles, it matters greatly how
the mass of water is distributed amongst particles of various sizes. For example, at 400 cm−1 liquid
water has an absorption coefficient of 171 m2/kg; since water has a density of 1000kg/m3 that
means that a layer of liquid water of depth 5.8 micrometers has optical thickness of unity, and
attenuates incident infrared by a factor of 1/e. That means, roughly speaking, that a spherical
droplet of radius r will remove essentially all the infrared hitting it – πr2 times the incident flux –
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Figure 4.28: The absorption coefficient for liquid water. The median absorption coefficient for
water vapor at (100mb, 260K) is reproduced from Fig 4.19 for the purposes of comparison.

as long as r is 5 micrometers or more. A mere 10 grams of water is sufficient to make 1.9 · 1010

particles of radius 5micrometers, which would have a total cross section area of 1.5 m2. Distributed
randomly within a column of air having base 1 m2 these particles would be sufficient to remove
essentially all of the flux of infrared entering the base of the column. In other words, a mass path
of liquid water as little as 10 grams per square meter is sufficient to make an optically thick cloud,
provided the water takes the form of sufficiently small droplets. However, if we take the same
mass of water and gather it up into a single drop of radius 1.3 cm – it would only intercept an
insignificant .0005 m2 of the incident light.

This estimate of the absorption by cloud droplets is not quite correct, because it fails to
take into account the extent to which electromagnetic radiation pentrates the droplet as opposed
to being diffracted around it. The calculation will be done more precisely in Chapter 5, but the
simple estimate gives the right answer to within a factor of 2 or better.

The net result is that, for the typical droplet size found in Earth’s water clouds, a cloud layer
containing anything more than about 10 grams per square meter of condensed water acts essentially
like a blackbody in the infrared. Water is not at all typical in this regard. Other condensed cloud-
forming substances, including liquid methane and CO2 ice, are far more transparent in the infrared,
and have a qualitatively different effect on planetary energy balance. The effect of such clouds will
be taken up in Chapter 5.

4.5 Real gas OLR for all-troposphere atmospheres

Calculation of OLR is one of the most fundamental steps in determining a planet’s climate. Now
that we are equipped with an ability to compute the OLR for real gases, we can revisit some of
our old favorite problems – Snowball Earth, the Faint Young Sun, Early Mars, and so forth –
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but this time relate the results to the actual atmospheric composition. In this section we present
results for the all-troposphere model introduced in Section 4.3.2, occasionally limiting the upper
air temperature drop by patching the adiabat to an isothermal stratosphere.

The homebrew exponential sum radiation model described in the preceding sections has the
advantage of simplicity, generality and understandability. We will use it wherever it is sufficiently
accurate to capture the main phenomena under discussion. However, professionally written ter-
restrial radiation codes are the product of a great deal of attention to detail, particularly with
regard to temperature scaling and the simultaneous effects of multiple greenhouse gases. They can
give highly accurate results provided one does not stray too far from the Earthlike conditions for
which they have been optimized. In the following, and at various places in future chapters, we
will have recourse to one of these standard radiation models, produced by the National Center for
Atmospheric Research as part of the Community Climate Model effort. We’ll refer to this model
as the ccm radiation model. Although it uses a good many special tricks to achieve accuracy at
high speed, and a lot of detailed bookkeeping to deal with the properties of a half dozen different
greenhouse gases of interest on Earth, what is going on inside this rather massive piece of code is
not fundamentally different from the Malkmus type band models and the exponential sum model
described previously.

A detailed discussion of surface back-radiation for real gases will be deferred to Chapter 6.
Some aspects of the infrared cooling profile for real gas atmospheres will be touched on in Section
4.8. The effect of clouds on OLR and on shortwave albedo will be discussed in Chapter 5.

4.5.1 CO2 and dry air

First we’ll compute the OLR for a mixture of CO2 in dry air, with the temperature on the dry air
adiabat T (p) = Tg · (p/ps)2/7 and ground temperature equal to surface air temperature. This is a
real-gas version of the calculation leading to Eq. 4.33; it amounts to a canonical OLR computation
which serves as a simple basis for intercomparison of different radiation models. Performed for other
greenhouse gases, it also can provide a basis for comparing the radiative effects of the gases. The
results presented here are carried out with Earth gravity and 1 bar of air partial pressure, but can
easily be scaled to other conditions. The CO2 path is inversely proportional to gravity, so 100ppmv
of CO2 on Earth is equivalent to 1000ppmv on a planet with ten times the Earth’s surface gravity
or 10ppmv on a planet with a tenth of the Earth’s surface gravity. For fixed CO2 concentration,
surface pressure has a quadratic effect on the path, since the mass of CO2 in the atmosphere (given
fixed concentration) increases in proportion to pressure, but one gets an additional pressure factor
in the equivalent path from pressure broadening. Thus, 100ppmv of CO2 in 1bar of air is equivalent
to 1ppmv of CO2 in 10bars of air.

In Figure 4.29 we show how OLR varies with CO2 concentration for a fixed surface temper-
ature of 273K. This curve gives the amount of absorbed solar radiation needed to maintain the
surface temperature at freezing. The CO2 amount is expressed as molar concentration in ppmv,
but for the range of concentrations considered, the difference between concentration and mixing
ratio is not very significant. Results are shown for both the ccm model and the simplest form
of the homebrew exponential sums radiation code. The homebrew calculation employed 10-term
sums with coefficients computed at 260K. The path was pressure-weighted to reflect collisional
broadening, but temperature weighting was neglected. Over the range of CO2 covered, only the
principal absorption region centered on 650cm−1 needs to be taken into account. The homebrew
calculation deviates by up to 10 W/m2 from the more comprehensive ccm calculation, but this is
quite good agreement in view of the fact that the homebrew code takes up barely a page and gener-
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Figure 4.29: The OLR vs CO2 concentration (measured in ppmv) for CO2 in a dry air atmosphere
with temperature profile given by the dry adiabat. The surface air temperature and the ground
temperature are both 273K, and the acceleration of gravity is 9.8m/s2. Results are shown for a
simple exponential sum radiation code without temperature weighting, and for the comprehensive
ccm radiation code.

alizes easily to any greenhouse gas, in contrast to the rather Earth-specific ccm code, which involves
several thousand lines of rather unpretty FORTRAN. Most of the mismatch arises from the neglect
of temperature scaling in the homebrew code. The homebrew code slightly overestimates OLR
for low CO2 where the radiating level is low in the atmosphere where warmer temperatures ought
to increase the infrared opacity. It underestimates OLR because the higher, colder atmosphere is
assumed more optically thick than it should be. If one complicates the homebrew code very slightly
to incorporate a band-independent temperature weighting of the form exp−(T ∗/T − T ∗/To) in the
path computation, then one can reduce the mismatch to under 2W/m2 with T ∗ = 900K.

As anticipated from the shape of the CO2 absorption spectrum, the OLR goes down approx-
imately in proportion to the logarithm of the CO2 concentration. Between 10ppmv and 1000ppmv
each doubling of CO2 reduces OLR by about 4W/m2 based on the ccm model. At large CO2

concentrations, the logarithmic slope becomes somewhat greater, as the weaker absorption bands
begin to come into play. At 10000ppmv, a doubling reduces OLR by 6.8W/m2. CO2 becomes a
somewhat more effective greenhouse gas at high concentrations, but never approaches the potency
of a grey gas, for which each doubling would more than halve the OLR once the optically thick
limit is reached. Were it not for the relatively gentle dependence of OLR on CO2 caused by the
highly frequency-selective nature of real-gas absorption, modest fluctuations in the atmosphere’s
CO2 content would lead to wild swings of temperature and almost certainly render the planet
uninhabitable.

Calculations show that for fixed CO2 concentration the OLR increases very nearly like the
fourth power of temperature, just as in the grey gas result in Eq. 4.33. In effect, the radiating
pressure remains nearly fixed as temperature varies. This makes it easy to do planetary temperature
calculations. For example, let’s compute what temperature the Earth would have if the CO2

concentration were at the pre-industrial value of 280ppmv, but there were no other greenhouse gases
in the atmosphere. The OLR for a surface temperature of 273K is 267W/m2. Balancing against
an absorbed solar radiation of 240W/m2, the temperature is determined by 267 · (T/273)4 = 240,
yielding T = 263K. Without the additional greenhouse effect of water vapor, Earth would be a
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very chilly place. According to Figure 4.29, for a dry Earth CO2 would have to be increased all
the way to 24000ppmv just to bring the temperature up to the freezing point.

Exercise 4.5.1 What temperature would Venus have if it had a 1bar air atmosphere mixed with
280ppmv of CO2? Assume that the planetary albedo is 30%, like that of Earth. How does this
temperature compare with the temperature Venus would have without any greenhouse gases in its
atmosphere?

One can’t get the Earth’s temperature right without water vapor, but one can still make
a decent estimate of the amount of CO2 increase needed to offset the reduction of Solar forcing
in the Faint Young Sun era, or due to a global Snowball Earth glaciation. A 25% reduction of
Solar absorption at the Earth’s orbit during the Faint Young Sun amounts to 60 W/m2, assuming
an albedo of .3. This is equivalent to the radiative forcing caused by increasing CO2 from 100
ppmv to 105ppmv (about 100mb CO2 partial pressure, or 10% of the atmosphere). From this we
include that it’s likely that it would take somewhat over 100mb of CO2 to keep Earth unfrozen
when the Sun was dim. Next let’s take a look at what it takes to deglaciate a Snowball Earth.
Let’s suppose that for a Neoproterozoic solar constant, the tropics freeze over when the CO2 is
reduced to 100ppmv (this is not far off estimates based on comprehensive climate models). Icing
over the Earth increases the albedo to about .6, leading to a reduction of almost 100W/m2 in
absorbed solar radiation. Hence, restoring the Tropics to the melting point would require well in
excess of 100mb of CO2 in the atmosphere; calculations with the homebrew model at higher CO2

concentrations than shown in Figure 4.29 indicate that fully a bar of CO2 mixed with a bar of air
would be needed. Deglaciation might not require restoring the full 100W/m2 of lost Solar forcing,
but it is still clear that a great deal of CO2 is needed to deglaciate a Snowball.

These estimates are crude, but they do get across one central idea: that because of the
logarithmic dependence of OLR on greenhouse gas concentration, it takes a huge increase in the
mass of CO2 to make up for rather moderate changes in albedo or solar output. Aside from neglect
of overlapping water vapor absorption, these estimates somewhat overstate the effect of CO2 on
OLR because they employ the dry adiabat rather than the less steep moist adiabat. We’ll revisit
the estimates shortly, after we bring water vapor into the picture.

4.5.2 Pure CO2 atmospheres:Present and Early Mars, and Venus

Figure 4.30 shows the OLR as a function of surface pressure for a pure CO2 atmosphere subject
to Martian gravity. The results span the range of surface pressure from those similar to the
thin atmosphere of present Mars up to the thick atmospheres commonly hypothesized for Early
Mars 6. The calculations were carried out for a fixed surface temperature of 270K, since we are
primarily interested in the question of how much CO2 there would have to be in order to warm
Early Mars up to near the freezing point and permit the widespread liquid water at the surface
that is seemingly demanded by the surface geology of the ancient Martian terrain. Results are
shown for two different variants of the all-troposphere model. In the first, the atmosphere is on
the dry CO2 ideal gas adiabat throughout its depth. This profile is inconsistent at high surface
pressure, however, since it becomes supersaturated aloft. For this reason, we also include results
in which the temperature profile is on the one-component condensing CO2 adiabat, which is on
the dry adiabat where unsaturated but pinned to the Clausius-Clapeyron result when it becomes
saturated (as in Fig. 2.6). With condensation, the surface pressure cannot be increased beyond

6There is no strong reason to exclude the possibility of a substantial amount of N2 in the Early Martian atmo-
sphere. Addition of N2 to the atmosphere would increase surface pressure and enhance CO2 absorption.
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35.4bar at a surface temperature of 270K, since the surface becomes saturated at that point and
no further CO2 can be added to the atmosphere without causing condensation. This does not pose
a very significant constraint on the climate of Early Mars, however; a more important limitation
is the amount of mass that could plausibly be lost from the primordial Martian atmosphere in the
past four billion years. The effect of condensation aloft on OLR, in essence, increases the amount
of CO2 needed to warm Early Mars to the point where it is unclear that so much atmosphere could
be lost.

At surface pressures comparable to that of Present Mars, the CO2 greenhouse effect reduces
the OLR by 35W/m2, and it would take 267W/m2 of absorbed solar radiation to maintain a
surface temperature of 270K. The required solar heating is well below the 440W/m2 solar forcing
at the subsolar point. Assuming the OLR to scale with the fourth power of temperature for fixed
surface pressure, this would support a temperature of 301K at the subsolar point, in contrast with
a temperature of 292K in the absence of the atmospheric greenhouse effect. The atmosphere exerts
only a modest warming effect on the surface temperature of Present Mars. To be sure, most of
the planet is much colder; the absorbed solar flux averaged over the surface of the planet is only
110W/m2, which supports a temperature of 216K with the greenhouse effect and 210K without.
Recall, however, that the planetary mean budget is not very meaningful on a planet like Present
Mars with no ocean and little atmosphere to average out the diurnal variations. A thin layer of the
rocky surface will be quite warm within a circle centered on the subsolar point, but the nightside
surface falls to temperatures well below 216K.

At higher CO2, the OLR decreases, approximately logarithmically in surface pressure for
pressures above 104Pa. At pressures above 1bar, however, condensation becomes important, and
the consequent increase in temperature aloft limits the decline of OLR. This limitation is quite
important for the climate of Early Mars. Taking into account the relatively high albedo caused
by molecular reflection from a thick CO2 atmosphere, the absorbed solar radiation for Early Mars
at a time when the solar flux is 30% reduced compared to today is about 70W/m2. This would
be sufficient to sustain a 270K surface temperature with a surface pressure of 3.6bar if it weren’t
for the effects of condensation. When condensation is taken into account, however, fully 10 bars
of CO2 are necessary to bring the surface temperature up to 270K 7. In fact, given the increase
in albedo associated with scattering of solar radiation in a 10bar atmosphere, even 10bars is likely
to prove insufficient. The effect of atmospheric scattering on albedo will be quantified in Chapter
5. In that chapter we will also discuss the potential for the scattering greenhouse effect from
CO2 ice clouds to warm Early Mars. As time progresses toward the present, and the Sun gets
brighter, it becomes progressively easier to warm Mars to the point where liquid water can persist
at the surface. The climate history of Mars is a race between the brightening Sun and the loss of
atmosphere, which seems to have been lost by the latter.

The continuum absorption in the CO2 window region is extremely important to these results.
Without continuum absorption, the OLR for a 2bar atmosphere would be over 50W/m2 higher.
The temperature scaling of the continuum affects the results by 10W/m2 or more. Whether or
not one can account for prevalent liquid water on Early Mars by a gaseous CO2 greenhouse effect
hinges on a matter of 10W/m2 of flux or so, and therefore the importance of the continuum is
disconcerting. To settle this question, one must get the CO2 continuum right, and that is far from
clear at this point, in view of the rather sparse experimental and theoretical results on the subject.

Now what about Venus? Are we finally equipped to say that we can account for the high

7The implications of CO2 condensation for the gaseous greenhouse effect on Early Mars were first discussed in:
Kasting JF 1991, Icarus 94. The reader is also referred there for a more comprehensive treatment of the radiative
transfer problem, including the effects of water vapor and a stratosphere. The conclusions are broadly similar to
those based on our homebrew radiation model



216CHAPTER 4. RADIATIVE TRANSFER IN TEMPERATURE-STRATIFIED ATMOSPHERES

40

80

120

160

200

240

280

320

1000 104 105 106

With Condensation

Without CondensationO
L

R
 (

W
/m

2 )

Surface Pressure (Pa)

T
g
 = 270K, Mars gravity

No-Atmosphere Flux

Early Mars Absorbed Solar

Figure 4.30: The OLR vs surface pressure for a pure CO2 atmosphere. The results were done
with a 10-term exponential sum code based on a 100mb reference pressure, and including the
temperature scaling of both the continuum and line absorption. Calculations were done for a
ground temperature of 270K, for Martian gravity. The dashed line shows the OLR for the case in
which the temperature profile is on the dry ideal gas CO2 adiabat, while the solid line incorporates
the effect of condensation on the temperature profile.

surface temperature of Venus in terms of the CO2 greenhouse effect? Unfortunately, not quite.
The problem is that the high albedo of Venus means that the climate is maintained by a relative
trickle of absorbed solar radiation, while the high surface temperature means that the infrared
emission at wavenumbers higher than 2300cm−1 would exceed 3800 W/m2 if the atmosphere were
transparent in that spectral region. Unlike the Earthlike case, the atmospheric opacity there
matters very much; however the HITRAN database does not include the weak absorption lines that
determine the atmospheric opacity at high wavenumbers. Extensions to the database suitable for
use in Venusian conditions are described in the Further Readings at the end of this chapter. We
will not pursue detailed calculations with the extended database, since one must, after all, stop
somewhere. Instead, we will make use of a highly simplified treatment of the short wave thermal
emission which at least tells us how close we are to being able to explain the temperature of
Venus. Specifically, we use exponential sums based on HITRAN for the spectral region with lower
wavenumbers than 2300cm−1, but represent the emission from higher wavenumbers by assuming
that there is a radiating pressure prad such that the atmosphere radiates to space like a blackbody
with temperature T (prad) throughout the high wavenumber spectral region. This is essentially the
same approach as we took in formulating the simplest model of the greenhouse effect in Chapter
3, except that this time we apply the radiating-level concept only to the high wavenumber part
of the emission. It is equivalent to stating that the absorptivity in the high wavenumber region is
sufficiently large to make the layer of the atmosphere between prad and the ground optically thick
throughout the high wavenumber region. Because of the shape of the Planck function, as prad is
made smaller and T (prad) is made colder, the peak emission shifts to lower wavenumbers and in
consequence the shortwave emission is sharply curtailed.

With these approximations the OLR can be written as OLR<(Tg)+OLR>(Tg, prad) where
OLR< is computed for the low wavenumber spectral region alone using exponential sums and

OLR> =
∫ ∞

ν1

πB(ν, T (prad, Tg))dν (4.93)
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where ν1 is the frequency cutoff for the high wavenumber region, B is the Planck function and
T (prad, Tg) is computed using the dry CO2 adiabat. The OLR thus computed must be balanced
against the absorbed solar radiation to determine the surface temperature. At present, the solar
radiation absorbed by Venus amounts to 163W/m2. Assuming a 93bar surface pressure, this
is in balance with a surface temperature of 652K if there is no emission at all from the high
wavenumber region, i.e. if prad = 0. This is a limiting case giving the maximum temperature that
can be obtained with CO2 alone regardless of how optically thick the high wavenumber region
may be. The fact that this is still somewhat short of the observed 720K surface temperature
of Venus means that a modest additional source of atmospheric opacity other than CO2 is still
needed to close the remaining gap in explaining the surface temperature. If prad is increased to
10 bars, the equilibrium temperature only drops to 633K, so it is only necessary for CO2 to be
essentially opaque in the high wavenumber region at pressures of 10 bars or greater. On the other
hand, if CO2 were really transparent at high wavenumbers, i.e. prad = 93bar, then the surface
temperature would drop all the way to 461K, which is well below the observed value. Detailed
radiation modeling of the high wavenumber region is consistent with a value prad ≈ 10bar, so it
appears that the CO2 greenhouse effect alone gets us almost all the way to explaining the high
surface temperature. The remaining opacity needed to bring the surface temperature up to 720K
is provided by Venus’ high sulfuric acid clouds,the trace of water vapor in the atmosphere, and
sulfur dioxide (in order of importance). The sulfur dioxide clouds are not good infrared absorbers,
and exert their greenhouse effect through infrared scattering, as discussed in Section 5.

4.5.3 Water vapor feedback

For a planet like the Earth which has a substantial reservoir of condensed water at the surface
(be it ocean or glacier), if left undisturbed for a sufficiently long time water vapor would enter
the atmosphere until the atmosphere reached a state where the water vapor pressure was equal
to the saturation vapor pressure at all points. In a case like this, if anything happens to increase
the temperature of the atmosphere, then the water vapor content will eventually increase; since
water vapor is a greenhouse gas, the additional water vapor will lead to an additional greenhouse
gas, warming the planet further beyond the initial warming. Amplification of this sort is known as
water vapor feedback, and works to amplify cooling influences as well. In this section we’ll examine
some quantitative models of real-gas water vapor feedback.

It turns out that atmospheric motions have a drying effect which keeps the atmosphere from
reaching saturation. This will be discussed at greater length in Chapter 7, but suffice it to say for
the moment that comprehensive simulations of the Earth’s atmosphere suggest that the situation
can be reasonably well represented by keeping the relative humidity fixed at some subsaturated
value as the climate warms or cools. That is the approach we shall adopt here, and it still yields
an atmosphere whose water vapor content increases roughly exponentially with temperature.

In these all-troposphere models, we shall also assume that the temperature profile is given
by the moist adiabat. Observations of the Earth’s tropics show this to be a good description of the
tropospheric temperature profile even where the atmosphere is unsaturated and not undergoing
convection. (See Problem ??). Evidently, the regions that are undergoing active moist convection
control the lapse rate throughout the tropical troposphere; there are also theoretical reasons for
believing this to be the case, but they require fluid dynamical arguments that are beyond the
scope of the present volume. The situation in the midlatudes is rather less clear, but we will use
the moist adiabat there as well, because it is hard to come up with something better in a model
without any atmospheric circulation in it. Results are presented for Earth surface pressure and
gravity, though we will make a few remarks on how the results scale to planets with greater or
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lesser gravity.

Since most of the big questions of Earth climate and climate of habitable Earthlike planets
involve water vapor feedback in conjunction with one or more other greenhouse gases, it is in this
section that we will for the first time get fairly realistic answers regarding the Faint Young Sun
problem, and so forth.

The case of a saturated pure water vapor atmosphere will be treated in Section 4.7 as part
of our treatment of the runaway greenhouse for real gas atmospheres. Here will will begin our
discussion with water vapor mixed with Earth air, with the temperature profile on the moist
adiabat for an air-water mixture. The OLR curve for this case is shown in Figure 4.31. Since there
is no other greenhouse gas, the OLR for the dry case (zero relative humidity) is just σT 4

g . For
ground temperatures below 240K there is so little water vapor in the air that the exact amount of
water vapor has little effect on the OLR. At larger temperatures, the curves for different relative
humidity begin to diverge. Even for relative humidity as low as 10%, the water vapor greenhouse
effect is sufficient to nearly cancel the upward curvature of the dry case; at 320K the OLR is
reduced by over 130W/m2 compared to the dry case. At larger relative humidites, the curvature
reverses, and the OLR as a function of temperature shows signs of flattening at high temperature,
in a fashion reminiscent of that we saw in our discussion of the Kombayashi-Ingersoll limit for grey
gases. This is our first acquaintance with the essential implication of water vapor feedback: the
increase of water vapor with temperature reduces the slope of the OLR vs. temperature curve,
making the climate more sensitive to radiative forcing of all sort – whether it be changes in the
Solar constant, changes in surface albedo, or changes in the concentration of CO2. To take but
one example, increasing the absorbed solar radiation from 346W/m2 to 366W/m2 increases the
ground temperature from 280K to 283K in the dry case. When the relative humidity is 50%, it
takes only 290W/m2 of absorbed solar energy to maintain the same 280K ground temperature,
but now increasing the solar absorption by 20W/m2 increases the surface temperature to 288K.
Water vapor feedback has approximately doubled the climate sensitivity, which is a typical result
for Earthlike conditions. The increase in climate sensitivity due to water vapor feedback plays a
part in virtually any climate change phenomenon that can be contemplated on a planet with a
liquid water ocean.

The influence of water vapor is strongest at tropical temperatures, but is still significant
even at temperatures near freezing. It only becomes negligible at temperatures comparable to the
polar winter.

One sometimes hears it remarked cavalierly that water vapor is the ”most important” green-
house gas in the Earth’s atmosphere. The misleading nature of such statements can be inferred
directly from Figure 4.31. Let’s suppose the Earth’s climate to be in equilibrium with 256W/m2

of absorbed solar radiation, averaged over the Earth’s surface. This corresponds to an albedo of
25%, which we take to be somewhat smaller than the actual observed albedo to account crudely
for the fact that part of the cloud albedo effect is canceled by cloud greenhouse effects which we
do not take into account in the Figure. If water vapor were the only greenhouse gas in the Earth’s
atmosphere, the temperature would be a chilly 268K, and that’s even before taking ice albedo
feedback into account, which would most likely cause the Earth to fall into a frigid Snowball state.
We saw earlier that the Earth would also be uninhabitably cold if CO2 were the only greenhouse
gas in the atmosphere. With regard to Earth’s habitability, it takes two to tango. In order to
maintain a habitable temperature on Earth without the benefit of CO2, the Sun would have to be
13% brighter. It will take well over a billion more years before the Sun will become this bright.

Now let’s add some CO2 to the atmosphere. Figure 4.32 shows how the OLR curve changes
if we add in 300ppmv of CO2 – slightly more than the Earth’s pre-industrial value. The general
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Figure 4.31: OLR vs. surface temperature for water vapor in air, with relative humidity held
fixed. The surface air pressure is 1bar, and Earth gravity is assumed. The temperature profile is
the water/air moist adiabat. Calculations were carried out with the ccm radiation model.

pattern is similar to the water-only case, but shifted downward by an amount that varies with
temperature. At 50% relative humidity, the addition of CO2 reduces the OLR at 280K by a
further 36W/m2 below what it was with water vapor alone. Because of the additional greenhouse
effect of CO2, the same 256W/m2 of absorbed solar radiation we considered previously can now
support a temperature of 281K when the relative humidity is 50%. Note that without the action
of CO2, the atmosphere would be too cold to have much water vapor in it, so one would lose much
of the greenhouse effect of water vapor as well. It appears that the actual surface temperature of
Earth can be satisfactorily accounted for on the basis of the CO2 greenhouse effect supported by
water vapor feedback.

Exercise 4.5.2 For the four moisture conditions in Figure 4.32, determine how much absorbed
solar radiation would be needed to support a surface temperature of 280K. For each case, use the
graph to estimate how much the surface temperature would increase if the absorbed solar radiation
were increased were increased by 20W/m2 over the original value. How does the amplication due
to water vapor feedback compare with the results obtained without CO2 in the atmosphere?

Next, let’s take a look at how the OLR curve varies as a function of CO2, with relative
humidity held fixed at 50%. The results are shown in Fig. 4.33. The addition of CO2 to the
atmosphere lowers all the curves, and the more CO2 you add, the lower the curves go. CO2

is planetary insulation: adding CO2 to a planet reduces the rate at which it loses energy, for
any given surface temperature, just as adding fiberglass insulation to a house reduces the rate at
which the house loses energy for a fixed interior temperature (thus reducing the fuel that must be
burned in order to maintain the desired temperature). Another thing we note is that when the
CO2 concentration becomes very large, the curve loses its negative curvature and becomes concave
upward, like σT 4. This happens because the CO2 greenhouse effect starts to dominate the water
vapor greenhouse effect, so that the flattening of the OLR curve due to the increase of water vapor
with temperature becomes less effective over the temperature range shown. Even for very high
CO2, water vapor eventually would assert its dominance as temperatures are raised in excess of
320K, causing the curve once more to flatten as the Kombayashi-Ingersoll limit is approached.
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Figure 4.32: As in Figure 4.31, but with 300ppmv of CO2 included. Note that the ”Dry” case
excludes only the radiative effects of water vapor; the moist adiabat is still employed for the
temperature profile.
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Figure 4.33: OLR vs surface temperature for various CO2 concentrations, at a fixed relative
humidity of 50%. Other conditions are the same as for Figure 4.31.
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As an example of the use of the information in Fig. 4.33, let’s start with a planet with
100ppmv of CO2 in its atmosphere, together with a sufficient supply of water to keep the atmo-
sphere 50% saturated in the course of any climate change. From the graph, we see that absorbed
solar radiation of 257 W/m2 would be sufficient to maintain a mean surface temperature of 280K.
From the graph we can also see that if the absorbed solar radiation is held fixed, increasing CO2

tenfold to 1000ppmv would increase the temperature to 285K once equilibrium is re-established,
and increasing it another tenfold to 10000ppmv (about 1% of the atmosphere) would increase the
temperature to 293K. A further increase to 100000ppmv (10% of the atmosphere) increases the
temperature to 309K. These represent substantial climate changes, but not nearly so extreme as
they would have been if CO2 were a grey gas. As another example of what the graph can tell
us, let’s ask how much CO2 increase is needed to maintain the same 280K surface temperature
with a dimmer sun. Reading vertically from the intersection with the line Tg = 280K, we find
that this temperature can be maintained with an absorbed solar radiation of 195W/m2 if the CO2

concentration is 100000ppmv. Thus, an increase in CO2 by a factor of 1000 can make up for a Sun
which is 25% dimmer than the base case.

Finally, we’ll take a look at how the OLR varies with CO2 for a fixed surface temperature
(Fig. 4.34). This figure is a more Earthlike version of the results in Fig. 4.29, in that the effects
of water vapor on radiation and the adiabat have been taken into account. As in the dry case,
there is broad range of CO2 concentrations – about 5ppmv to 5000ppmv – within which the OLR
decreases very nearly like the logarithm of CO2 concentration. The slope depends only weakly
on the relative humidity, especially if one leaves out the completely dry case. This suggests that
the effects of water vapor and CO2 on the OLR are approximately additive in this range. We
note further that the logarithmic slope of OLR vs CO2 becomes steeper at very high CO2, since
one begins to engage more of the outlying absorption features of the CO2 spectrum; again, CO2

becomes an increasingly effective greenhouse gas at high concentrations. Conversely, at very low
concentrations the logarithmic slope is reduced, as CO2 absorption comes to be dominated by a
relatively few dominant,narrow absorption features.

For any given CO2 value, increasing the moisture content reduces the OLR, as would be
expected from the fact that water vapor is a greenhouse gas. A little bit of water goes a long
way. With 100ppmv of CO2 in the atmosphere, going from the dry case to 10% relative humidity
reduces the OLR by 36 W/m2. To achieve the same reduction through an increase of CO2, one
would have to increase the CO2 concentration all the way from 100ppmv to 10000ppmv. Clearly,
water vapor is a very important player in the radiation budget, though we have already seen that
because of the thermodynamic control of water vapor in Earthlike conditions, CO2 nonetheless
remains important. As the atmosphere is made moister, the further effects of water vapor are
less dramatic. Increasing the relative humidity from 10% to 50% only brings the OLR down by
17W/m2, and going all the way to a saturated atmosphere only brings OLR down by a further 12
W/m2. Further, at very high CO2 concentrations the OLR becomes somewhat more insensitive
to humidity, as CO2 begins to dominate the greenhouse effect.

The information presented graphically in Figures 4.32, 4.33 and 4.34 amount to a miniature
climate model, allowing many interesting questions about climate to be addressed quantitatively
without the need to perform detailed radiative and thermodynamic calculations; it’s the kind
of climate model that could be printed on a wallet-sized card and carried around everywhere.
Calculations using this information can be simplified by presenting the data as polynomial fits,
which eliminates the tedium and inaccuracy of measuring quantities off graphs. Then, what we
have is a miniature climate model that can be programmed into a pocket calculator. Polynomial
fits allowing the OLR to be calculated as a function of temperature, CO2 and relative humidity are
tabulated in Tables 4.2 and 4.3. Values of OLR for parameters intermediate between the tabulated
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Figure 4.34: OLR vs CO2 for a fixed surface temperature Tg = 280K, for various values of the
relative humidity. Other conditions are the same as for Figure 4.31.

CO2 ao a1 a2 a3

10ppmv 258.56 2.5876 -0.0059165 -0.00013402
100ppmv 246.13 2.5056 -0.0034095 -0.00010672
1000ppmv 232.51 2.3815 -0.0015855 -8.3397e-05
10000ppmv 215.74 2.1915 0.00056634 -5.0508e-05
100000ppmv 189.06 1.8554 0.0044094 1.0735e-05

Table 4.2: Coefficients for polynomial fit OLR = ao + a1x + a2x
2 + a3x

3, where x = Tg − 275.
Calculation carried out with rh = .5.

one can easily be obtained by interpolation.

Using these polynomial fits, we can put numbers to some of our old favorite climate questions
by solving OLR(T,CO2) = S for T , given various assumptions about CO2 and the absorbed solar
radiation S. To wit –

• Global Warming: If we assume an albedo of 22.5%, the absorbed solar radiation is 265
W/m2. For 50% relative humidity, and a pre-industrial CO2 concentration of 280ppmv, the
corresponding equilibrium temperature is 285K, which is close to the pre-industrial global
mean temperature. The albedo we needed to assume to get this base case is somewhat
smaller than the Earth’s observed albedo, because a portion of the cloud albedo is offset by
the cloud greenhouse effect. Now, if we double the CO2 to 560ppmv, the new temperature is

rh ao a1 a2 a3

Dry 313.8 -6.275 -0.36107 -0.019467
.1 277.28 -5.9416 -0.35596 -0.020237
.5 259.52 -5.5332 -0.33915 -0.018932
Saturated 249.1 -5.183 -0.32187 -0.017367

Table 4.3: Coefficients for polynomial fit OLR = ao + a1x + a2x
2 + a3x

3, where x = ln(CO2/100),
with CO2 in ppmv. Calculation carried out with Tg = 280K for the indicated moisture conditions.
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287K – a two degree warming. This is essentially the same answer as obtained by Manabe
and Wetherald in their pioneering 1967 calculation, and was obtained by essentially the same
kind of calculation we have employed. If we double CO2 once more, to 1120ppmv, then the
temperature rises to 289K, a further two degrees of warming. The fact that each doubling
of CO2 gives a fixed additional increment of warming reflects the logarithmic dependence of
OLR on CO2; until one gets to extremely high concentrations, each doubling reduces the
OLR by approximately 4W/m2.

• Pleistocene Glacial-Interglacial Cycles: In the depths of an ice age, the CO2 drops to
180ppmv. Using the same base case as in the previous example, the temperature drops
to 284K, about a one degree cooling relative to the base case. This by no means accounts
for the full amount of ice age cooling, but it is significant enough to imply that CO2 is a
major player. In the Southern Hemisphere midlatitudes, away from the direct influence of
the growth of major Northern Hemisphere ice sheets, the CO2 induced cooling is a half to a
third of the total, indicating that either the ice sheet influence is propagated into the South-
ern Hemishere through the atmosphere or ocean, or that the cooling we have calculated has
been further enhanced by feedbacks due to clouds or sea ice.

• The PETM warming: How much CO2 would you have to dump into the ocean-atmosphere
system to account for the PETM warming discussed in Section 1.9.1? One answers this
by first deciding how much the atmospheric CO2 concentration needs to increase, and then
making use of information about the partitioning of carbon between the atmosphere and
ocean. The PETM warming has been conservatively estimated at 4C, and has nearly the
same magnitude in the tropics as in the Arctic. The PETM event starts from an already
warm hothouse climate, so for the sake of argument let’s assume that the CO2 starts at four
times the pre-industrial value, yielding a starting temperature of 289K. We need to increase
the CO2 from 280ppmv to 1090ppmv (just under two doublings) to achieve a warming to
293K. This amounts to an addition of 1744 gigatonnes of C to the atmosphere as CO2,
which is comfortably within the limits imposed by the 13C data, but not all carbon added to
the atmosphere stays in the atmosphere. Over the course of a thousand years, approximately
80% of atmospheric carbon will be absorbed into the ocean, and over longer periods the ocean
may be able to take up even more. Thus, to sustain the warming more than a millennium,
one would need to add at least 5 times the nominal value, or 8720 gigatonnes to the ocean-
atmosphere system. It would be hard to reconcile such a large addition of carbon with the
isotopic record. This is the essential puzzle of the PETM , which seems to call for some kind
of strong destabilizing feedback in the climate system.

• Deglaciation of Snowball Earth: If we increase the Earth’s albedo to 60% (in accord with the
reflectivity of ice) and reduce the solar constant by 6% (in accord with the Neoproterozoic
value) the absorbed solar radiation is only 128 W/m2. With CO2 of 280 ppmv, the equilib-
rium global mean temperature is a chilly 228K, more or less independent of what we assume
about relative humidity. To determine the deglaciation threshold, we’ll assume generously
that the Equator is 20K warmer than the global mean, so that we need to warm the global
mean to 254K to melt the tropics. Assuming 50% relative humidity, increasing CO2 all the
way to 200,000 ppmv (about 20% of the atmosphere) still only brings the global mean up
to 243K, which is not enough to deglaciate. From this we conclude that without help from
some other feedback in the system, CO2 would have to be increased to values in excess of
20% of the atmosphere to deglaciate. In fact, detailed climate model calculations indicate
that it is even harder to deglaciate a snowball than this calculation suggests

• Temperature of the post-Snowball hothouse Let’s assume that somehow or other the Snowball
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does deglaciate when CO2 builds up to 20%. After deglaciation, the albedo will revert
to 22.5%, and the absorbed solar radiation to 249 W/m2. When the planet re-establishes
equilibrium, the temperature will have risen to 311K. This is hot, and the tropics will be
hotter than the global mean. However, the planet does not enter a runaway greenhouse and
these temperature are well within the survival range of heat-tolerant organisms, especially
since the polar regions would probably be no warmer than today’s tropics.

• Faint Young Sun: Let’s consider a time when the Sun was 25% fainter than today, reducing
the absorbed solar radiation by 66 W/m2. How much would CO2 have to increase relative
to pre-industrial values in order to keep the global mean temperature at 280K and prevent
a freeze-out? We’ll address this question by using the fit in Table 4.3. For 280 ppmv of CO2

the OLR is 253 W/m2 assuming 50% relative humidity. We need to bring this down by 66
W/m2 to make up for the faint Sun. Using the fit, this can be done by increasing CO2 to
240,000 ppmv (24% of the atmosphere) if we keep the relative humidity at 50%. If we on
the other hand assume that for some reason the atmosphere becomes saturated with water
vapor, then it is only necessary to increase the CO2 to 15% of the atmosphere.

• The Earth in one billion years: According to Eq. 1.1, the solar constant will have increased
to 1497 W/m2, increasing the absorbed solar radiation per unit surface area to 290 W/m2.
If CO2 is held fixed at the pre-industrial value, the Earth will warm to a global mean
temperature of 296 K if relative humidity is held fixed at 50%. In order for silicate weathering
to restore a temperature of 287K, the weathering would have to bring the CO2 all the way
down to 10ppmv, at which point photosynthesis as we know it would probably become
impossible.

• Temperature of Gliese 581c and 581d: The planets Gliese 581c and 581d are in close orbits
around a dim M-dwarf star. The redder spectrum of an M-dwarf would have some effect on
the planetary energy balance, through changes in the proportion of solar energy absorbed
directly in the atmosphere. Neglecting this effect, though we can estimate the temperatures
of these planets assuming them to have an Earthlike atmosphere consisting of water vapor,
CO2 and N2/O2. Gliese 581c is in an orbit where it would absorb about 583 W/m2, assuming
the typical albedo of a rocky planet with an ocean. Gliese 581d would absorb only 50 W/m2.
Even if CO2 were 20% of the atmosphere, the OLR would be 82 W/m2, so Gliese 581d is likely
to be an icy Snowball. On the other hand even with only 1ppmv of CO2 in the atmosphere
the OLR at 330K would be 351 W/m2, far below the absorbed solar radiation for Gliese
581c. Thus, if Gliese 581c has an ocean, it is very likely to be in a runaway state – something
we’ll confirm when we re-examine the runaway greenhouse for real-gas atmospheres. There’s
an additional wrinkle to the Gliese system, though, in that these planets are more massive
than Earth and have higher surface gravity. The higher gravity somewhat reduces the water
vapor greenhouse effect, since for a given vapor pressure the corresponding amount of mass
in the atmosphere is lower, according to the hydrostatic relation. This turns out to cool
Gliese 581c somewhat, but still not enough to save it from a runaway.

Exercise 4.5.3 About how much carbon would need to be added to the atmosphere to achieve
a 4K PETM warming if the initial CO2 at the beginning of the event were only twice the pre-
industrial value? If the initial CO2 were eight times the pre-industrial value? (Note that in the
first case we are implicitly assuming some unknown process keeps the late Paleocene warm even
with relatively little help from extra CO2)

The above calculations include the effects of water vapor feedback, and also include the
effects of changes in albedo due to ice cover, where explicitly mentioned. However, they do not
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incorporate any feedbacks due to changing cloud conditions. Cloud changes could either amplify or
damp the climate change predicted on the basis of clear-sky physics, according to whether changes
in the cloud greenhouse effect or the cloud albedo effect win out. Unfortunately, there is no simple
thermodynamic prescription that does for cloud feedbacks what the assumption of fixed relative
humidity does for water vapor feedbacks. We will learn more about the factors governing cloud
radiative forcing in Chapter 5, but idealized conceptual models for prediction of cloud feedbacks
remain elusive.

The problem of whether elevated CO2 can account for hothouse climates such as the Cre-
taceous and Eocene is considerably more challenging than the other problems we have discussed
above, since it requires one to answer a regional climate question: Under what conditions can we
suppress the formation of polar ice? We already saw in Chapter 3 that a rather small change in
radiation balance can make the difference between a planet with a small polar ice sheet and a
planet which is globally ice-free. Suffice it to say at this point that an increase of CO2 to 16 times
pre-industrial values – the upper limit of what is plausibly consistent with proxy data – would
yield a global mean warming of 10K. Would this be enough to suppress formation of sea ice in
the Arctic, and keep the mean Arctic temperatures around 10C? Would the associated tropical
temperatures be too hot to be compatible with available proxy data? We’ll have to return to these
questions in Chapter 8, where we discuss the regional and seasonal variations of climate.

4.5.4 Greenhouse effect of CO2 vs CH4

4.6 section:OLR.CO2vsCH4

There is considerable interest in the idea that on the Early Earth methane may have taken over
much of the role of CO2 in offsetting the Faint Young Sun. In part this interest is due to rather
sketchy geochemical evidence that at some times in the Archaean CO2 concentrations may not
have been high enough to do the trick, but regardless of whether the evidence actually demands a
relatively low-CO2 atmosphere, possibilities abound that in an anoxic atmosphere methane could
build up to high concentrations. Even on an abiotic planet, there are possibilities for direct volcanic
outgassing of methane, at a rate dependent on the state of oxygen in the planet’s interior. Once
biology comes on the scene, methanogens can convert volcanic CO2 and H2 to CH4, or can make
CH4 by decomposing organic matter produced by anoxygenic photosynthesis.

Methane cannot build up to very high concentrations in a well-oxygenated atmosphere, but
the relatively small amounts of methane in the atmosphere today (about 1.7 ppmv) nevertheless
contribute significantly to global warming. There is, however, a widespread misconception that
methane is in some sense an intrinsically better greenhouse gas than CO2. A few simple calculations
will serve to clarify the true state of affairs.

In order to compare the relative effects of CH4 and CO2 on a planet’s radiation budget, we
calculate the OLR for each case in what we have been calling the canonical atmosphere – a mixture
of each gas into a dry atmosphere consisting of 1 bar of Earth air with temperature profile on the
dry air adiabat, carried out with Earth’s surface gravity. Results for a fixed surface temperature of
280K, computed using the homebrew radiation model employing a constant temperature scaling
coefficient T ∗ = 900K, are shown in Fig. 4.35. This graph in essence gives the amount of
greenhouse gas needed to sustain a surface temperature of 280K, given any specified amount of solar
absorption. For example, with an absorbed solar radiation of 300W/m2 the surface temperature
can be sustained with either 464ppmv of CO2 or 35,600 ppmv of CH4 (3.56% of the atmosphere
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Figure 4.35: **CAPTION

by mole fraction). These results somewhat overestimate the effect of each gas as compared to
an actual moist atmosphere, since a moist atmosphere would be on the less steep moist adiabat
and in a moist atmosphere the water vapor absorption would compete to some extent with the
CO2 and CH4 absorption. Still, as an estimate of the relative effect of the two gases, the story is
pretty clear. Methane is, intrinsically speaking, a considerably worse greenhouse gas than CO2.
The OLR curve for for methane is everywhere well above the curve for CO2, so that it takes more
methane than CO2 to achieve a given reduction of OLR.

The common statement that methane is, molecule for molecule, a better greenhouse gas than
CO2 is true only for situations like the present where methane is present in far lower concentrations
than CO2. In this situation, the greater power of a molecule of CH4 to reduce the OLR results
simply from the fact that the greenhouse effect of both CH4 and CO2 are approximately logarithmic
in concentration. Reading from Fig. 4.35, we see that for methane concentrations of around
1ppmv, each doubling of methane reduces OLR by about 2W/m2. On the other hand, for CO2

concentrations near 300 ppmv, each doubling of CO2 reduces the OLR by about 6 W/m2. Hence,
to achieve the same OLR reduction as a doubling of CO2 one needs three doublings of methane,
but since methane starts from a concentration of only 1ppmv, this only takes the concentration to
8ppmv, and requires only 7

300 as many molecules to bring about as was needed to achieve the same
reduction using a doubling of CO2. Equivalently, we can say that adding 1ppmv of methane yields
as much reduction of OLR as adding 75ppmv of CO2. The logarithmic slopes in this example
are exaggerated compared to the appropriate values for Earth’s actual atmosphere, because of the
use of the dry adiabat and because of inaccuracies in the simple temperature scaling used in the
homebrew radiation code. Using the ccm radiation code on the moist adiabat, with water vapor at
50% relative humidity, we find instead that each doubling of methane near 1ppmv reduces OLR
by 0.77 W/m2, while each doubling of CO2 near 300ppmv reduces OLR by 4.3 W/m2; in this case
adding 1ppmv of methane reduces the OLR by as much as adding 38ppmv of CO2. Nonetheless,
the principle remains the same: If methane were the most abundant long-lived greenhouse gas in
our atmosphere, and CO2 were present only in very small concentrations, we would say instead
that CO2 is, molecule for molecule, the better greenhouse gas.

Kirschvink and others have proposed that the Makganyene Snowball came about through a
methane catastrophe, in which oxygenation converts methane to CO2 and reduces the greenhouse
effect sufficiently to precipitate a snowball. A methane crash, due to a reduction in methanogenic
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Figure 4.36: Total OLR reduction for the canonical atmosphere with a mixture of CH4 and CO2.
Each curve gives the OLR reduction relative to a transparent atmophere for a fixed sum of CH4

and CO2 molar concentrations, indicated on the curve in units of ppmv. The results are plotted as
a function of the CH4 molar concentration to the total molar concentration for the two gases. The
ratio is equal to the ratio of atmospheric carbon in the form of CH4 to total atmospheric carbon.
Larger values of the OLR reduction correspond to a stronger greenhouse effect.

activity of some other mechanism, has sometimes been proposed as a trigger for the Neoproterozoic
Snowballs as well. It is by no means easy to make these scenarios play out as they are supposed
to, since methane contributes much less to the greenhouse effect than CO2 when the two gases
have similar abundances in the atmosphere. Conversion of methane to CO2 will only reduce the
greenhouse effect if methane is initially present in sufficiently small concentrations – but if there
is too little methane present, the contribution of methane to the total greenhouse effect is too
small to make much difference. Let’s use the data in Fig. 4.35 to illustrate how the conversion
of methane to CO2 would affect climate in a few illustrative cases. The detailed numbers would
change with a more accurate radiation model, or if the effect of water vapor were brought in, but
the basic conclusions would remain much the same.

For example, suppose we started out with an atmosphere that contained 36,650 ppmv of
methane, which would be sufficient to maintain a 280K surface temperature given 300 W/m2 of
absorbed solar radiation. If this were all converted to CO2 by oxidation, then, according to Fig.
4.35 the OLR would plunge to 255 W/m2. In order to re-establish radiation balance, the planet
would have to warm up to a temperature well in excess of the the initial 280K. Far from causing
a Snowball, in this case the oxidation of methane would cause a hot pulse, followed by gradual
recovery to the original temperature as the CO2 is drawn down by silicate weathering.

Next let’s consider a more general situation, and identify the conditions necessary for a
conversion of CH4 to CO2 to substantially reduce the greenhouse effect. Because the absorption
features of CH4 and CO2 do not overlap significantly for the range of concentration under con-
sideration, the combined effects of the two gases can be obtained by summing the OLR reduction
∆OLR for each of the gases taken in isolation. We wish to ask the question: if we have a given
number of carbon atoms to use in supplying the atmosphere with greenhouse gases, how does the
net greenhouse effect depend on the way we divvy up those atoms between CH4 and CO2? Since
each molecule has a single carbon, this question can be addresed by varying the molar concentra-
tion of CH4 while keeping the sum of the molar concentrations of CH4 and CO2 fixed. Results of
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a calculation of this type are shown in Fig. 4.36. For any fixed total atmospheric carbon content,
the OLR reduction has a broad maximum when plotted as a function of the methane ratio, and
varies little except near the extremes of an all-methane or all-CO2 atmosphere. The only case in
which one can get a substantial reduction in greenhouse effect by oxidizing methane into CO2 is
when the initial CO2 concentration is very high, the initial CH4 fraction is between about 10%
and 90% of the total, and the CH4 is almost entirely converted to CO2. For example, with a total
carbon concentration of 10000ppmv, reducing the CH4 concentration from 1000ppmv to 1ppmv
reduces the greenhouse effect from 104W/m2 to 80 W/m2. Because the curve is so flat, starting
from an atmosphere which is 80% methane works almost as well: in that case the greenhouse
effect is reduced from 101 W/m2 to 80 W/m2. If we have a total of 100,000 ppmv of carbon in
the atmosphere, then the maximum greenhouse effect occurs for an atmosphere which is about
25% methane, and has a value of 151 W/m2. Reducing the methane to 1 ppmv brings down the
greenhouse effect 36 W/m2, to 115 W/m2. In the Paleoproterozoic or Archaean, when the net
greenhoue effect needed to be high to offset the Faint Young Sun, it is possible that a methane
crash could have reduced the greenhouse effect enough to initiate a snowball, but it is essential
that in a methane crash, the methane concentration be brought almost all the way down to zero;
a reduction of methane from 50% of the atmosphere to 10% of the atmosphere would not do much
to the greenhouse effect. By the time of the Neoproterozoic, when the solar luminosity is higher
and less total greenhouse effect is needed to maintain open water conditions, it is far less likely
that a methane catastrophe could have initiated glaciation. Some further remarks on atmospheric
transitions that could initiate a Snowball will be given in Chapter 9.

4.7 Another look at the runaway greenhouse

We are now equipped to revisit the runaway greenhouse phenomenon, this time using the absorption
spectrum of actual gases in place of the idealized grey gas employed in Section 4.3.3. The setup of
the problem is essentially the same as in the grey gas case. We consider a condensible greenhouse
gas, optionally mixed with a background gas which is transparent to infrared and noncondensing.
A surface temperature Tg is specified, and the corresponding moist adiabat is computed. The
temperature and the greenhouse gas concentration profiles provide the information necessary to
compute the OLR, in the present instance using the homebrew exponential sums radiation model
in place of the greygas OLR integral. As before, the OLR is plotted as a function of Tg for the
saturated atmosphere, and the Kombayashi-Ingersoll limit is given by the asymptotic value of OLR
at large surface temperature.

We’ll begin with water vapor. Figure 4.37 shows the results for a pure water vapor atmo-
sphere, computed for various values of the surfaced gravity. The overall behavior is very similar to
the grey gas result shown in Fig. 4.3: the OLR attain a limiting value as temperature is increased,
and the limit – defining the absorbed solar radiation above which the planet goes into a runaway
state – becomes higher as the surface gravity is increased, and for precisely the same reasons as
invoked in the grey gas case. The result, however, is now much easier to apply to actual planets,
since with the real gas calculations we have the real numbers in hand for water vapor, and not
for some mythical gas characterized by a single absorption coefficient. Several specific applications
will be given shortly.

As in the grey-gas case the limiting OLR increases as surface gravity is increased.

Now let’s generalize the calculation, and introduce a noncondensing background gas which
is transparent in the infrared; we use N2 in this example, though the results are practically the
same if we use any other diatomic molecule. The background gas affects the Kombayashi-Ingersol
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Figure 4.37: OLR vs surface temperature for a saturated pure water vapor atmosphere. The
numbers on the curve indicate the planet’s surface gravity. The calculation was done with the
homebrew exponential sums radiation code, incorporating both the 1000 cm−1 and 2200 cm−1

continua, but neglecting temperature scaling of absorption outside the continua. 20 terms were
used in the exponential sums, and wavenumbers out to 5000 cm−1 were included; the atmosphere
was considered transparent to higher wavenumbers

limit in two ways: First, the pressure broadening increases absorption, which should lower the
limit. Secondly, the background gas shifts the lapse rate toward the dry adiabat, which is much
steeper than the single-component saturated adiabat. The increase in lapse rate in principle could
enhance the greenhouse effect, but given the condensible nature of water vapor, it actually reduces
the greenhouse effect, because the low temperatures aloft sharply reduce the amount of water
vapor there. If the background gas were itself a greenhouse gas, this effect might play out rather
differently. At sufficiently high temperatures, water vapor will dominate the background gas and
so the limiting OLR at high temperature will approach the pure water vapor limit shown in Figure
4.37. However, for intermediate temperatures, the background gas can modify the shape of the
OLR curve.

Results for various amounts of N2 are shown in Fig. 4.38.

• Runaway greenhouse on Earth: With present absorbed solar radiation (adjusted for net cloud
effects) of 265 W/m2, the Earth at present is comfortably below the Kombayashi- Ingersoll
limit for a planet of Earth’s gravity. According to Eq. 1.1, as the solar luminosity continues
to increase, the Earth will pass the 291 W/m2 threshold where a runaway becomes possible
in about 700 million years. In 1.7 billion years, it will pass the 310W/m2 threshold where
a runaway becomes inevitable for an atmosphere with 1 bar of N2 and no greenhouse gases
other than water vapor.

• Venus: **

• Gliese 581c: **

• Evaporation of icy moons in Earthlike orbit: **

• Lifetime of a post-impact steam atmosphere: [**Do Earth case here. Mars as an exercise]
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Figure 4.38: As for Fig. 4.37 but for a mixture of water vapor in N2 on the saturated moist
adiabat. Calculations were carried out with a surface gravity of 20m/s2, for the indicated values
of N2 partial pressure at the ground.

• Freeze-out time of a magma ocean:**

4.8 Pure radiative equilibrium for real gas atmospheres

Pure radiative equilibrium amounts to an all-stratosphere model of an atmosphere, and is a coun-
terpoint to the all-troposphere models we have been discussing. Real atmospheres sit between the
two extremes, sometimes quite near one of the idealizations. In this section we will focus on pure
infrared radiative equilibrium. The effects of solar absorption in real gases will be taken up in
Chapter 5.

From simple analytic solutions, we know essentially all there is to know about pure radiative
equilibrium for grey gases. It is important to understand these things because the structure of
atmospheres results from an interplay of convection and pure radiative equilibrium. A thorough
understanding of pure radiative equilibrium provides the necessary underpinning for determining
where the Stratosphere starts, and its thermal structure. We will now examine how the key
elements of the behavior of pure radiative equilibrium differ for real gases. The specific issues to
be addressed are:

• For grey gases in radiative equilbrium, the minimum temperature is the skin temperature
based on OLR, and is found in the optically thinnest part of the atmosphere in the absence
of atmospheric solar absorption. For real gases, can the radiative equilibrium temperature
be much lower than the skin temperature?

• For a grey gas atmosphere with a given vertical distribution of absorbers, the radiative equi-
librium temperature profile is uniquely determined once the OLR is specified. Specifically,
one can determine the temperature profile of the radiative-equilibrium stratosphere without
needing to know anything about the troposapheric temperature structure. To what extent
is this also true for real gases?
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Figure 4.39: OLR vs surface temperature for a saturated pure CO2 atmosphere. Calculations were
performed with the values of surface gravity indicated on each curve. The scale at the top gives
the surface pressure corresponding to the temperature on the lower scale.

• For a grey gas atmosphere with a given vertical distribution of absorbers, the normalized
temperature profile T (p)/Tg is independant of the ground temperature. This means that the
radiative equilibrium temperature profile has the same shape, regardless of the magnitude
of the solar radiation with which the atmosphere is in balance. How much does this result
change for real gases?

• For a grey gas, the temperature jump at the ground is greatest when the atmosphere is
optically thin, and vanishes as the atmosphere becomes optically thick. For real gases, the
atmosphere is optically thick in some parts of the spectrum, and optically thin in others.
What determines the temperature jump in these circumstances?

• Grey gases are most unstable to convection where they are optically thick. In the optically
thick limit, the slope d lnT/d ln p equals 1

4 without pressure broadening, and 1
2 with pressure

broadening. Hence, a dry adiabat can go unstable near the ground only if R/cp < 1
4 without

pressure broadening, or R/cp < 1
2 with pressure broadening. How do these thresholds differ

for a real gas?

All of the issues except for the behavior of the static stability near the ground are well
illustrated by the semi-grey model, which we referred to more poetically as ”one-band Oobleck”
in Section 4.4.1. In this model, we assume κ to be constant within a band of width ∆ centered
on frequency νo, and zero elsewhere. To keep the algebra simple we will make the additional
assumption that ∆ is small enough that B can be considered essentially frequency-independent
within the band; this assumption can be easily dispensed with at the cost of a slightly more involved
calculation. What makes the semigrey model tractable is that the infrared heating is due solely
to the flux within the absorbing band, so that one can still deal with a single optical thickness
without any need to sum or integrate over frequency to get the net heating.

First, let’s consider the semigrey radiative equilibrium in the optically thin limit. From the
results in Section 4.2.2, the infrared radiative cooling at any level is simply 2πB(νo, T )∆, whereas
the heating by absorption of upwelling infrared from the ground is πB(νo, Tg)∆. Balancing the
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two, gives the equation determining the atmospheric temperature:

B(νo, T ) =
1
2
B(νo, Tg) (4.94)

Since the equation for T is independent of level, we conclude that in the optically thin case, the
atmosphere is isothermal in infrared radiative equilibrium, just as it is for the optically thin grey
case. The resulting atmospheric temperature is always lower than the ground temperature, and
may be called the semigrey skin temperature. For a grey gas, Tskin/Tg = 1/21/4 ≈ .84, but for
the semigrey case, the ratio depends on the frequency of the absorbing band. From the form
of the Planck function, it can easily be shown that Tskin/Tg depends on frequency only through
the ratio hνo/kT . A simple analytic calculation shows that Tskin/Tg → 1

2 for small values of
hνo/kT and Tskin/Tg → 1 when hνo/kT becomes large; a simple numerical solution shows that
the ratio increases monotonically between the two limiting cases (see Problem ??). The grey-gas
skin temperature ratio sits in the middle of this range, and indeed for frequencies near the peak of
the Planck function, the semigrey ratio does not differ greatly from the grey value. For example,
at 650cm−1 and a ground temperature of 280K, the semigrey skin temperature is 233K, whereas
the grey skin temperature is 235K

When deriving the radiative equilibrium for grey gases, we specified the OLR and used that
as a boundary condition for determining the thermal structure; the ground temperature is then
computed from the resulting lower boundary fluxes. For real gases, it proves more convenient to
specify the ground temperature Tg, and find the resulting temperature structure and OLR. We
adopt this approach not only in our analytic solution of the semigrey case, but also in our numerical
solutions for actual gases. When fixing Tg and increasing optical thickness, the OLR goes down,
and so the amount of absorbed solar radiation needed to maintain the stated Tg decreases.

The derivation of the full infrared radiative equilibrium solution for the semigrey case is
identical to that we used in the grey case, with the following substitutions: (1) The optical thickness
τ is based on the value of κ in the absorbing band alone,(2) σT 4 is replaced by πB(νo, T ) (3) The
fluxes I+ and I− represent the flux integrated over the band ∆ alone, and (4) The OLR appearing
in the top boundary condition is no longer the net OLR emitted by the planet, but only the portion
of OLR (call it OLR∆) emitted in the absorbing band. The assumption of infrared equilibrium still
implies that the flux I+−I− is constant and equal to OLR∆, but since this flux is only the portion
of OLR in the band, it is no longer determined a priori by planetary energy balance. Instead, it
must be determined by making use of both boundary conditions, that I− = 0 at the top of the
atmosphere, and I+ = πB(νo, Tg) at the bottom of the atmosphere (assuming the ground to have
unit emissivity). The result of applying both boundary conditions is

I+ − I− =
2π

2 + τ∞
B(νo, Tg) (4.95)

This is equal to the ground emission in the optically thin case, and approaches zero as the at-
mosphere is made more optically thick. Note, however, that it is only the OLR in the band that
approaches zero; the net emission approaches a finite, and possibly quite large, lower bound, be-
cause the emission from the rest of the spectrum where the atmosphere is transparent is simply
the ground emission. By substituting the expression for the net upward flux into the expression
for I+ + I−, we find the following expression determining T (τ)

B(νo, T ) =
1 + τ∞ − τ

2 + τ∞
B(νo, Tg) (4.96)

where τ is the optical thickness within the band where κ is nonzero. At the top of the atmosphere,
this reduces to B(νT ) = B(νo, Tg)/(2 + τ∞) Note that this is always less than the semi-grey skin
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temperature, and becomes progressively colder in comparison the the skin temperature as τ∞ is
made large. For the semigrey case, then, the stratospheric temperature differs from the grey gas
case in two important ways. First, as the atmosphere is made optically thick in the absorbing band,
the stratospheric temperature approaches zero even though the net OLR remains finite (owing to
the emission through the transparent part of the spectrum). Thus, the stratosperic temperature
can be much colder than the grey-gas skin temperature, resolving the quandary raised in Chapter
3. Moreover, as the optical thickness of the atmosphere is increased, the stratosphere actually
becomes colder than even the semigrey skin temperature; this contrasts with the grey case, where
the temperature of the uppermost part of the atmosphere always approaches the skin temperature,
regardless of how optically thick the rest of the atmosphere is. This important difference arises
because, in the semigrey case, the optical thickness of the lower part of the atmosphere causes
the upwelling spectrum illuminating the stratosphere to be depleted in those frequencies where
the stratosphere absorbs best. Nonetheless, the stratosphere continues to emit effectively at those
frequencies, leading to very cold temperature. This depletion also has the important consequence
that ths stratospheric temperature is no longer independent of the existence of a troposphere,
or of the tropopause height and thermal structure of the troposphere. This has the potential to
affect the calculation of the tropopause height when we put radiative equilibrium together with
convection.

The temperature jump at the ground is determined by B(νo, Tsa) = ((1+τ∞)/(2+τ∞))B(νo, Tg),
which has the same form as the corresponding expression for the grey gas case, save for the ap-
pearance of the Planck function in place of σT 4. As in the grey gas case, the jump is a maximum
for optically thin atmospheres, and vanishes in the optically thick limit. The main difference here
is that the jump can be made to vanish by making the atmosphere optically thick in just a lim-
ited part of the spectrum, even though the atmosphere is optically thin (in this case absolutely
transparent) elsewhere. This feature will reappear in our discussion of radiative equilibrium for an
atmosphere in which infrared absorption is provided by CO2. As the atmosphere becomes optically
thick in the absorption band, the unstable temperature jump at the ground diminishes, but what
happens to the interior static stability of the air near the ground? To determing this, we take the
derivative of Eq. 4.96 and multiply by ps/Tsa to obtain the logarithmic radiative equilibrium lapse
rate at the ground:

d lnT

d ln p
|ps

=
B(νo, Tg)

Tsa
dB
dT (νo, Tsa)

κ(ps)ps/g

2 + τ∞
(4.97)

In the optically thick limit, the second factor is unity without pressure broadening, or 1
2 with

pressure broadening. When the atmosphere is optically thick, the first factor can be evaluated
with Tsa = Tg. With a little algebra, the first term can be re-written as (exp(u) − 1)/(u exp(u)),
where u = hνo/(kTg); this term has a maximum value of unity at u = 0 (high frequencies or low
temperatures) and decays to zero like 1/u at large u (low frequencies or high temperatures). For
u = 1 which puts the absorption band near the maximum of the Planck function, the value is
about .63. For the semi-grey model then, we conclude that the degree of instability of radiative
equilibrium in the optically thick limit is bounded; for example, with u = 1 and incorporating
pressure broadening, the radiative equilibrium near the ground is statically unstable when R/cp >
.315 (vs. a threshold value of .5 for a grey gas). Hence, the semigrey case has a somewhat enhanced
instability at the ground as compared to the grey case, but the difference is not great. We’ll see
shortly that this is one regard in which the qualitative behavior of a real gas differs significantly
from the semigrey case.

Finally, let’s look at how the radiative equilibrium profile for the semigrey atmosphere
changes if we change Tg and leave everything else fixed. For a grey gas, the function T/Tg is
invariant because both the surface emission and the interior atmospheric emission increase by a
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Figure 4.40: Left panel: Infrared radiative equilibrium temperature profiles for one and two-band
Oobleck, and for a CO2-air mixture at 300ppmv and 3000ppmv, subject to a fixed 280K ground
temperature. For the Oobleck cases, the absorption coefficients were chosen such that the optical
depth of the atmosphere as a whole is 10 in the strong absorption band (650− 700cm−1) and 1 in
the weak bands on the flanks (600−650cm−1 and 700−750cm−1). Right panel: The corresponding
logarathmic slope, d lnT/d ln p

factor b4 if we replace Tg by b ·Tg. For the semigrey case, the emission is given by B(νo, T ), which
is no longer a simple power of T . This means that the ratio T/Tg is no longer independent of Tg.
The nature of the dependance is left for the reader to explore in Problem ??.

Working our way up the ladder to reality, we’ll now present some numerical solutions for
2-band Oobleck and for mixtures of CO2 in air. The latter are computed using our homebrew
exponential sum radiation code, incorporating the effect of pressure broadening but without taking
temperature scaling into account. This is sufficient to show how the extreme range of absorption
coefficients in a typical real gas affect the radiative equilibrium. The equilibria were found by a
simple time stepping method with fixed Tg. For any given initial temperature profile T (p) one
can calculate the infrared fluxes, and hence, by differencing in the vertical, the infrared heating
rates. These are used to update T (p), and the whole process is repeated until equilibrium is
achieved, where the infrared heating is zero and the temperature no longer changes. Since we
are only interested in the equilibrium and not the time course of the approach to equilibrium,
we can afford to be somewhat sloppy in our time-stepping method, so long as it is stable enough
to yield an equilibrium at the end. Figure reffig:RealGasRadEq shows the resulting equilibrium
profiles for two-band Oobleck with the secondary-band absorption coefficient one tenth the value
of the primary, and for a CO2-air mixture in an Earthlike atmosphere, at 300ppmv and 3000ppmv.
The left panel shows the temperature profile, while the right panel gives the logarithmic slope
of temperature, which determines the static stability of the atmosphere. For comparison, the
analytically derived results for one-band pressure-broadened Oobleck (the semigrey model) are
also shown. These calculations were carried out with a ground temperature Tg = 280K. Some key
characteristics of the results are summarized in Table 4.4.
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Comparing the curves for 1-band and 2-band Oobleck shows that adding in the weakly
absorbing bands reduces the vertical temperature gradient except in a thin layer near the ground.
In this sense, most of the atmosphere acts as if it were made more optically thin, despite the fact
that we have actually made the atmosphere more opaque to infrared by adding new absorption
in additional bands without taking away absorption in the original band. Indeed, the OLR goes
down from 333 W/m2 in the 1-band case to 309 W/m2 in the 2-band case, despite the warmer
temperatures aloft in the latter. The key to this behavior was pointed out back at the end of
Section 4.2.2: in an atmosphere which is optically thin in some parts of the spectrum but optically
thick in others, the heating rate (which in turn determines the radiative equilibrium) is dominated
by the parts of the spectrum where the optical thickness is nearest unity. This is the reason the
weaker absorption bands control the behavior of the temperature in the interior of the atmosphere.
The associated reduction in temperature gradient warms the atmosphere aloft, at pressures below
700mb. In essence, the weak bands allow the upper reaches of the atmosphere to capture more
of the infrared upwelling from below; spreading the absorption over a somewhat broader range of
the spectrum in essence makes the problem a bit more like a grey gas, and makes the upper air
temperature somewhat closer to the grey gas skin temperature.

While the addition of the weak bands reduces the temperature gradient aloft and hence
stabilizes the atmosphere against convection, this comes at the expense of increasing the gradient
near the ground, and destabilizing the layer there. This stabilization/destabilization pattern shows
up clearly in the plot of the logarithmic temperature derivative shown in the right panel of Figure
4.40. Based on R/cp = 2/7, the one-band Oobleck profile is unstable for pressures higher than
450mb, whereas the two-band case is only unstable for pressures higher than 760mb, though within
the unstable layer the 2-band case is considerably more unstable than the one-band case. In the two-
band case, more of the net vertical temperature contrast of the atmosphere is concentrated in a thin
layer near the ground. Overall, the atmosphere acts as if it were optically thick near the ground,
but relatively optically thin aloft. The behavior near the ground results from the extremely strong
absorption near the center of the CO2 absorption band. This spectral region captures the upwelling
radiation from the ground, which is not yet depleted in the strongly absorbing wavenumbers. If
there were much temperature discontinuity near the ground, the absorption would lead to strong
radiative heating of the low level air; hence the only way to be in radiative equilibrium is for
the air temperature to approach the ground temperature. More mathematically speaking, the
phenomenon arises because the low level heating is controlled largely by the boundary terms in
the flux integral in Eq 4.9, which in turn is dominated by the strongly absorbing spectral regions.

The real-gas CO2 results have many features in common with 2-band Oobleck, notably the
weak temperature gradient in the interior of the atmosphere and the enhancement of temperature
gradient near the ground. The strong destabilization near the ground is even more pronounced
for CO2, because it has a far stronger peak absorption than the Oobleck case we considered, and
because the absorption varies over a greater range of values. The associated optical thickness near
the ground also keeps the unstable temperature jump between the ground and the overlying air
small. An optically thin grey-gas would have a large unstable temperature jump at the ground.
The strong absorption bands in a real gas smooth out this discontinuity and move it into a finite
width layer in the interior of the atmosphere. From the standpoint of the convection produced,
there is little physical difference between the two cases.

The main differences between the CO2 cases and the Oobleck cases shows up in the upper
atmosphere, where the CO2 cases show steep declines of temperature with height – though not so
steep as to destabilize the upper atmosphere. As at the bottom boundary, the culprit is the spectral
region where absorption coefficients peak. These regions lead to very strong emission in the upper
layers of the atmosphere, which are poorly compensated by absorption since the upwelling infrared
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OLR,W/m2 Tskin T (0) T (p/ps = .5) Tg − T (ps)
1-band Oobleck 333 232K 161K 206K 6.5K
2-band Oobleck 309 228K 182K 215K 12.75K
CO2/air 300ppmv 295 226K 126K 214K 2.8K
CO2/air 3000ppmv 275 222K 115K 214K 1.75K
Mars, CO2,ps = 7mb 303 227K 128K 215K 2.9K
Mars, CO2,ps = 7mb,Tg = 250K 192 203K 126K 196K 4.4K
Mars, CO2,ps = 2bar 86 166K 102K 208K 1.3K
Venus,CO2,ps = 90bar,Tg = 700K 55 148K 77K 500K .1K

Table 4.4: Summary properties of infrared radiative equilibrium solutions. Calculations were done
with Tg = 280K unless otherwise noted.

reaching the upper atmosphere has been depleted in most wavenumbers that absorb at all well.
The strong emission causes the temperature near the top to fall far below the skin temperature.
Based on the net OLR, the grey gas skin temperature for the two CO2 cases is somewhat above
220K, whereas the actual temperature at the 1mb level is 126K in the 300ppmv case and 115K
in the more optically thick 3000ppmv case. Finally, we note that increasing CO2 by a factor of 10
has relatively little effect on the radiative equilibrium temperature profile, despite the fact that the
increase lowers the OLR by nearly 20W/m2. The changes are principally seen near the ground,
where the increased optical thickness in the wings has reduced the surface temperature jump.
While the two-band Oobleck model reproduces the near-ground destablization present in the real
CO2 calculation, it is unable to simultaneously represent the temperature jump at the ground.
Lacking the extremely strong peak absorption of CO2, the addition of the weak absorption wings
in 2-band Oobleck makes the surface budget act like an optically thinner atmosphere, increasing
the surface jump.

To illustrate how the radiative equilibrium solution scales with Tg, we show the profiles of
T/Tg for surface temperatures ranging from 240K to 320K. Only the case of 300ppmv CO2 is
shown, though the other atmospheres treated in Figure 4.40 yield similar results. For a grey gas,
all the curves for a given atmospheric composition would collapse onto a single universal profile;
for the reasons discussed in the semigrey case, this is no longer true for real gases. However,
while the temperature aloft does not scale precisely with the ground temperature, the deviations
are modest enough that one can still get useful intuition about the behavior of the system by
assuming that radiative equilibrium temperature scales with the ground temperature. For CO2,
the actual temperature aloft is always somewhat colder than that which one would estimate by
proportionately scaling the temperature upward from a colder to warmer ground temperature.
Recall that these calculations are done without temperature scaling of the absorption coefficient,
so the effect shown is purely due to the shape of the Planck function.

The general features encountered in the terrestrial calculations discussed above carry over to
the pure CO2 atmospheres characteristic of Present and (possibly) Early Mars. Martian radiative
equilibrium solutions with a 7mb thin atmosphere or 2bar thick atmosphere are shown in Figure
4.42. The most striking feature of these solutions is that increasing the mass of the atmosphere by
a factor of nearly 300 causes very little increase in the vertical temperature contrast. This stands
in sharp contrast to the grey gas case, for which the enormous increase in optical depth going from
the 7mb case to the 2bar case would cause the temperature in the latter to drop to nearly zero
within a short distance of the ground. As before, the reason for the relative insensitivity of the
temperature profile is that the radiative heating is determined largely by the part of the spectrum
where the optical depth is of order unity. For the present Mars case, this occurs in the near wings
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Figure 4.41: Variation of the shape of the temperature profile as a function of ground temperature.
Results are shown for 300ppmv of CO2 in air.
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Figure 4.42: Infrared radiative equilibrium for pure CO2 atmospheres with Martian gravity. Results
are shown for an Early Mars case with a 2 bar surface pressure and 280K ground temperature, and
for Present Mars cases with 700mb surface pressure and 250K and 280K ground temperatures. To
make it possible to compare the cases, the temperatures have been plotted as a function of p/ps.
The 2bar case includes the CO2 continuum absorption.



238CHAPTER 4. RADIATIVE TRANSFER IN TEMPERATURE-STRATIFIED ATMOSPHERES

of the principle absorption peak, whereas for Early Mars it occurs within the continuum window
region. The shift allows both cases to act roughly like a case with order unity optical depth, apart
from the thin radiative boundary layers near the ground and the top. The temperature profiles
are similar despite the fact that it would require 303W/m2 of absorbed Solar radiation to maintain
a surface temperature of 280K in the thin present Martian atmosphere, but only 86W/m2 in a
2bar atmosphere. For the Present Mars case, we have also included a calculation with with a
realistically cold daytime surface temperature, the equilibrium temperature aloft is too cold in
comparison with observations. This suggests once more an important role for solar absorption in
determining the temperature structure of the present Martian atmosphere.

It is only when we go to massive atmospheres like that of Venus that the atmosphere becomes
optically thick throughout the spectrum, allowing the vertical temperature contrast to increase
dramatically. A simplified calculation without temperature scaling, and ignoring emission beyond
2300cm−1, shows that with a 700K ground temperature, the radiative equilibrium temperature
drops to 500K at the midpoint of the atmosphere and all the way to 80K at the 100mb level. This
yields a very strong greenhouse effect: it takes only a trickle of 55W/m2 of absorbed solar radiation
to maintain the torrid ground temperature. Note, however, that it is important that a fair amount
of this trickle actually be absorbed at the ground, and not in the upper reaches of the atmosphere;
otherwise the deep atmosphere becomes isothermal, and can in fact become as cold as the skin
temperature in extreme cases, as discussed in Section 4.3.5. So far as the maintainence of its
thermal structure is concerned, the troposphere of Venus is more like the Antarctic glacier than it
is like the Earth’s troposphere. The trickle of heat escaping the Earth’s interior beneath the glacier
– a mere 30 mW/m2 – is sufficient to raise the basal ice temperature to the melting point and create
subglacial Lake Vostok precisely because the diffusivity of heat in ice is so small. So it is, too, with
the atmosphere of Venus; the extremely optically thick tropophere renders the radiative diffusivity
of heat very small, and allows the tiny trickle of solar radiation reaching the surface to accumulate
in the lower atmosphere and raise the temperature to extreme values. Unlike the glacier, however,
when the lower atmosphere becomes hot enough, it can start to convect. Convection supplants the
radiative heat flux, but also establishes the adiabat, allowing the surface to be much hotter than
the radiating level.

Different noncondensible greenhouse gases differ somewhat in details of their radiative-
equilibrium profiles, but the general picture does not differ greatly from what we have learned
by looking at CO2. When the greenhouse gas can condense near the ground, however,the situ-
ation becomes quite different. The case of water vapor in air provides a prime example. If the
ground temperature is high enough that the amount of water vapor present in saturation makes
the lower atmosphere optically thick, then the temperature will decline rapidly with height above
the ground, because that is what optically thick atmospheres do in radiative equilibrium. Water
vapor exhibits this effect particularly strongly, since it easily makes the atmosphere optically thick
everywhere outside the window regions of the spectrum, and even the windows close off above
300K. As the temperature decreases, however, the water vapor content decreases in accordance
with the limits imposed by Clausius-Clapeyron. Within a small distance above the ground, the air
is so cold that there is little water vapor left, and the atmosphere further aloft becomes optically
thin. As a result, most of the variation in optical thickness of the atmosphere is concentrated
into a thin, radiative boundary layer near the ground, and the optical thickness (and hence the
temperature) varies greatly within this layer. Because of the strong temperature gradient and high
optical thickness of the boundary layer, a strong greenhouse effect is generated entirely within
the boundary layer, leading to low OLR. If one imposes equilibrium with an Earthlike absorbed
solar radiation, the ground temperature must increase to temperature well in excess of 320K to
achieve balance, and the steep increase of saturation vapor pressure with temperature further
exacerbates the high temperature gradient in the radiative boundary layer. It is a bit as if the
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Figure 4.43: Basic features of real gas pure infrared radiative equilibrium.
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entire optically thick atmosphere of Venus were squeezed into a boundary layer having a depth
of a kilometer or less. Adding a noncondensing gas like CO2 to the mix alters the temperature
profile above the boundary layer, but does not eliminate the basic pathology of the situation. The
equilibrium profile in this case is of little physical consequence because the slightest convection or
other turbulent mixing would mix away the thin radiative boundary layer, warming and moist-
ening a much deeper layer of the atmosphere The radiative equilibrium solutions we have been
studying for the noncondensing case are worthy of protracted consideration because they provide
some useful insight as to the stratospheric temperature for more realistic atmospheres in which
there is some low level convection. The same cannot be said for pure radiative equilibrium in the
condensing water-vapor/air system, which is an exercise in pathology having little or no bearing
on the operation of real atmospheres.

Though real gas radiative equilibrium is not amenable to the kind of complete solution we
enjoyed for the grey gas case, its behavior can be reasonably well captured by a few generalities,
summarized in Figure 4.43. For real gases as for grey gases heated by infrared emission from the
lower boundary, the temperature decreases with distance from the boundary. This can be viewed
as a kind of thermal diffusion in the sense that heat transfer is down the temperature gradient,
though the process is only described by a true local diffusion in the optically thick limit. Real
gases behave as if they are optically thick near the ground, exhibiting strong convectively unstable
temperature gradients there and little temperature jump between the ground and overlying air.
The temperature gradient weakens in the interior, but there is generally a region of strong, though
stable, temperature decline near the top of the atmosphere. The upper atmosphere is considerably
colder than the grey gas skin temperature, since (by Kirchoff’s law) the atmosphere radiates
efficiently in the strongly absorbing parts of the spectrum, but the radiation illuminating the
upper atmosphere is depleted in this portion of the spectrum. In contrast to the grey gas case,
the contrast in temperature across the depth of the atmosphere is relatively insensitive to the
amount of greenhouse gas in the atmosphere. As long as there are some spectral regions where
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the atmosphere is optically thick, and some where the atmosphere is optically thin, the radiative
cooling tends to be dominated by the intermediate spectral regions. As a result, temperature tends
to drop by a factor of two to three between the ground and the upper atmosphere, with only slight
increases even when the greenhouse gas content is increased by many orders of magnitude. This
behavior persists until there is so much greenhouse gas present that the atmosphere becomes very
optically thick throughout the thermal infrared spectrum, as is the case on Venus.

The upshot of all this is that atmospheres whose temperature is maintained by absorption
of upwelling infrared from a blackbody surface will never exhibit pure radiative equilibrium. There
will always be a layer near the surface which is unstable to convection. If the atmosphere is op-
tically thin, the instability is generated by a temperature jump at the surface. If the atmosphere
is optically thick and subject to pressure broadening, the instability is generated by strong tem-
perature gradients in the interior of the atmosphere near the surface. This remark even applies
qualitatively to gas giants which have no surface, as the deep atmosphere is dense enough that it
can begin to act like a blackbody even though there is no distinct surface. An atmosphere can
be stabilized throughout its depth, however, if it is subject to atmospheric solar heating which
increases with altitude in a suitable fashion.

4.9 Tropopause height for real gas atmospheres

The radiative equilibrium solutions discussed in the preceding section are all unstable near the
ground. As convection sets in, it will mix away the unstable layer and replace it by an adiabat; the
well-mixed region is the troposphere. The change in lower level temperature profile, however, will
alter the upward radiation which heats the stratosphere, and therefore cause temperature changes
even above the layers reached directly by convection. When all this sorts itself out, how deep is
the troposphere? This is is the problem of tropopause height, which we have already touched on
briefly for grey gases, and which we will consider in depth and generality in Chapter 7. Here we
will offer a taste of a few of the most important aspects of real gas behavior, to tide the reader over
until the more complete treatment to be introduced later. In this section we will assume, as in the
all-troposphere model, that turbulent fluxes couple the ground so tightly to the overlying air that
there is no discontinuity at the ground. This assumption will be relaxed in Chapters 6 and 7.

For a grey gas, the problem of finding the tropopause height is relatively simple. SInce the
radiative equilibrium profile depends only on OLR – and that only via a simple formula – one
starts with the radiative equilibrium profile for the desired OLR, picks a guess for the tropopause
pressure, and then replaces the temperature between there and the ground with the adiabat for
the gas under consideration. One then computes the actual OLR for the resulting profile, and
generally will find that it is generally somewhat different from the OLR assumed in computing
the radiative equlibrium. To make the solution consistent, one then adjusts the tropopause height
until the computed OLR including the troposphere is the same as the target OLR within some
desired accuracy. This is a simple problem in root-finding for a function of a single variable (the
tropopause pressure), and can be solved by any number of means, Newton’s Method and bisection
being among the most commonly employed.

For a real gas,the radiative equilibrium in the upper atmosphere depends on the spectrum
of the infrared upwelling from below, so we no longer have the luxury of assuming that the strato-
spheric temperature profile remains fixed as we vary the estimate of the tropopause height. Instead,
one must simultaneously solve for both the tropopause height and the corresponding equilibrium
profile aloft. This is most easily done by a modification of the time-stepping method we employed
to compute the pure radiative equilibrium solutions. As in that case, it is somewhat awkward to
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Figure 4.44: Radiative-convective equilibrium for an Earthlike dry atmosphere with 300ppmv CO2.
The left panel shows the temperature profile in comparison with pure radiative equilibrium and
the dry adiabat. The right panel shows the radiative heating rates for the radiative-convective
solution and for the all-troposphere model. In all cases the ground temperature is 280K.

pick an OLR and find the corresponding ground temperature Tg. Instead, we fix Tg, and compute
the corresponding OLR. This can be done for a range of ground temperatures, whereafter the
ground temperature in equilibrium with any specified solar absorption can be determined. We
are back in the familiar business of computing the OLR(Tg) curve, much as we did for the all-
troposphere model, but this time taking into account the effect of a self-consistent stratosphere on
the OLR.

The general problem of representing convection in climate models is a very challenging one,
about which entire volumes have been written. For the problem at hand, there are a number of
simplifying assumptions which allow us to avoid some of the more subtle aspects of the subject.
First, we will be content to assume that convection instantaneously resets the profile to an adiabatic
profile. Next, given where instability occurs in the pure infrared radiative equilibrium profiles, it is
safe to assume that convection occurs in a single layer extending from the ground to the tropopause
height, without any possibility of multiple interleaved internal convecting and radiative equilib-
rium layers. Further, we will only seek an equilibrium solution, without attempting to accurately
represent the approach to equilibrium. Finally, we carry out the calculation by holding Tg fixed
and allowing the rest of the atmosphere to relax to the corresponding equilibrium. Under these
circumstances, the elimination of unstable layers by convective mixing can be carried out through
the following simple modification to the pure radiative equilibrium time-stepping algorithm: One
calculates the adiabat Tad(p) corresponding to the ground temperature Tg and surface pressure Ts.
Then at each timestep, wherever T (p) < Tad(p), the temperature is instantaneously reset to Tad.
The rationale for doing this is that convection is a much faster process than radiative relaxation,
and that wherever the temperature is below the adiabatic temperature, air parcels starting at the
ground have enough buoyancy to reach that level, mixing air all along the way.

Results for an Earthlike air/CO2 atmosphere are shown in Figure 4.44. The convection
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reaches to 380mb, where the temperature is about 200K; above that, the atmosphere is in radia-
tive equilibrium, which defines the stratosphere. Note that the temperature continues to decline
even above the maximum height reached by convection, because the infrared radiative equilibrium
profile also has decreasing temperature, so long as part of the spectrum is optically thick. This
is the case also for Earth’s real stratosphere, even though ozone heating eventually causes the
upper stratospheric temperature to turn around and begin to increase. Thus, one shouldn’t take
temperature decline as a signature of convection, and in a case where atmospheric heating causes
upper stratospheric temperature to increase the temperature minimum will generally be above the
top of the convective layer.

The OLR for all three calculations is similar: 296.4 W/m2 for the radiative-convective model
vs. 295 W/m2 for pure radiative equilibrium and 296.6 W/m2 for the all-troposphere model. Thus,
if the atmosphere is maintained by 295 W/m2 of absorbed solar radiation, neither the formation of
a troposphere by convection nor the formation of a stratosphere by upper level radiative heating
has much effect on the surface temperature, though the effects on the atmospheric profile are
considerable.

The heating rate profile shown in the right panel of Figure 4.44 sheds some light on the
basic mechanism maintaining convection in the troposphere. The entire troposphere is subject to
radiative cooling. This feature is guaranteed by the construction of the solution, since any positive
heating would warm the atmosphere, causing it to exceed the adiabatic temperature and shutting
off convection. Suppose convection has just occurred and reset the temperature to the adiabat.
Then, in the next small interval of time, radiative cooling will cause the temperature to fall below
the adiabat, triggering convection once more, which adds back the heat lost by radiative cooling
and restores the adiabat. The heat is supplied by parcels of air that pick up heat from the ground,
become buoyant, and carry the heat upward to the level where it is needed. The thermal balance in
the troposphere is between radiative cooling and convective heating. The addition of atmospheric
solar absorption to the troposphere would have no effect on the tropospheric temperature or the
tropopause height, so long as it doesn’t turn the net radiative cooling at any level into a net
radiative heating. Short of that happening, the sole effect of tropospheric solar absorption is to
reduce the convective heating, and hence the frequency or vigor of convection. However, since
infrared cooling is weakest just below the tropopause, solar absorption near the tropopause level
can easily move the tropopause downward.

Using Figure 4.44 we can compare two simple estimates of the tropopause height with the
actual value. Looking at where the adiabat intersects the pure radiative equilibrium, we find an
estimate of 205mb. This is somewhat too high in altitude, since the formation of the troposphere
changes the upward flux and warms the stratosphere. The other way to estimate tropopause
height is to look at the heating profile computed for the dry adiabat, shown in the right panel of
the Figure. Identifying the region of radiative heating with the stratosphere yields an estimate of
325mb, which is closer to the true value, but still too high in altitude. In the light of the discussion
surrounding Fig. fig:AllTropNetIRFluxGrey, we can say that the real gas atmosphere behaves
rather like a pressure-broadened grey-gas atmosphere with optical depth somewhat greater than
unity.

The tropopause height and temperature in this simple radiative-convective calculation are
quite similar to the Earth’s actual midlatitude values, despite the neglect of stratospheric ozone
heating and tropospheric water vapor. Why is the tropical tropopause higher (near 100mb)? The
main factor governing the tropopause height is the lapse rate. If the lapse rate is weaker, then
one has to go to higher altitudes in order to intersect the radiative equilibrium profile. In the
warm tropics, the moist adiabat has significantly weaker gradient than the dry adiabat. In fact, a
calculation with the dry CO2/air atmosphere, but employing the moist adiabat in the temperature
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profile, yields a tropopause height of ∗∗mb. This suggests that the effects of moisture on lapse rate
are more important than the radiative effects of tropospheric moisture in elevating the tropical
tropopause. This calculation is carried out in Problem ??

4.10 The lesson learned

This has been a rather arduous chapter (certainly for the author, and no doubt for the reader as
well, but hopefully to a lesser extent). The basic lesson, however, can be summed up in a few
pithy remarks. The greenhouse effect relies on infrared optical thickness of the atmosphere and
temperature decline with height. Real greenhouse gases do not make the atmosphere optically
thick uniformly throughout the infrared spectrum. Rather, the optical thickness is concentrated
in preferred gas-dependent spectral bands, and the main way the greenhouse effect gets stronger
as the gas concentration increases is through the spread of the optically thick regions to every
greater portions of the spectrum. There are two basic ways to get the temperature decline which is
necessary to translate optical thickness into OLR reduction: radiative equilibrium in an atmosphere
that is optically thick through at least part of the spectrum, or convection in an atmosphere
where the radiative equilibrium is statically unstable either at the surface or internally. The
tropopause height determines the blend of the two mechanisms in force. Both mechanisms can
yield a surface temperature very much in excess of the no-atmosphere blackbody temperature,
but a radiatively-dominated atmosphere is a very different place from a convectively-dominated
atmosphere, since the latter has vigorous vertical mixing that can give rise to a stew of small scale
turbulent phenomena. A mostly radiative-equilibrium atmosphere is a more quiescent place, in
which mixing is dominated by the more ponderous large scale fluid motions. A central remaining
question is how the tropopause height behaves as an atmosphere is made more optically thick.
When do we approach an all-troposphere atmosphere, and when do we approach an all-stratosphere
atmosphere? This question will be taken up in detail in Chapter 7.

4.11 For Further Reading

The HITRAN spectroscopic database is described in

• Rothman LS, et al. 2005: The HITRAN 2004 molecular spectroscopic database, J. Quant.
Spectroscopy and Radiative Transfer, 96, pp 139-204.

In a book that one hopes will stick around for a while, there is always some risk in referring to
specific means of obtaining digital data. The HITRAN database is so valuable, however, that it is
sure to be available in some form more or less indefinitely. At the time of writing, the HITRAN
data can be obtained over the Internet at the URL http://cfa-www.harvard.edu/hitran. The
1970’s era Goody and Yung book on atmospheric radiation refers to obtaining the data on ”AFGL
tapes,” an no doubt earlier books made reference to things like ”punch cards” or ”paper tapes.”
No doubt, our reference to the ”Internet” will seem similarly quaint within a few years.

The HITRAN database does not include the very weak CO2 absorption lines that become im-
portant for extremely massive atmospheres such as that of Venus, and moreover, the temperature
dependence data of the lines that are included becomes somewhat inaccurate at Venusian temper-
atures. There are two databases that extend the CO2 absorption database to cover the Venusian
regime, both of which use the same data format as HITRAN. The first is the HITEMP database. At
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the time of writing, there is neither a convenient published document describing the database nor
a generally accessible download site, but an updated version of the HITEMP database and expanded
documentation are expected to be made available through the HITRAN site in the near future. In
the meantime, information about the existing database can be found in

• Rothman LS, et al. 1995: HITRAN, HAWKS, and HITEMP High-Temperature Molecular
Database, Proc.Soc.Photo-Optical Instrumentation Engineers 2471 105-111.

and the original version of the database can be downloaded by contacting the managers of the
HITRAN site. A similar high-temperature,high-pressure database is described in

• Tashkun SA, et al. 2003: CDSD-1000, the high-temperature carbon dioxide spectroscopic
databank, J. Quantitative Spectroscopy and Radiative Transfer, 82, pp 165-196.

It is available online via ftp at ftp.iao.ru/pub/CDSD-1000.

Information on the CO2 collision-induced continuum is very sparse. The modeling of the
CO2 continuum used throughout this book (and incorporated in the software supplement) is based
on a polynomial fit to absorption coefficients described in

• Kasting JF, Pollack JB and Crisp D 1984: Effects of high C02 levels on the surface temper-
ature and atmospheric oxidation state of the early Earth, J. Atmos. Chem, 1, pp 403-428.

References to the laboratory measurements upon which the parameterization is based amount to
one published paper, one NASA technical report, and one unpublished personal communication;
these may be found in the above referenced article. Some theoretical developments, which have
been incorporated in a few of the more recent representations of the far-infrared continuum, are
described in

• Gruszka M and Borysow A 1997: Far Infrared Collision-Induced Absorption of CO2 for the
Atmosphere of Venus at Temperatures from 200K to 800K, Icarus, 129, pp 172-177.

but there seem to have been no new laboratory measurements since those discussed in the former
paper.

The collision induced continua of H2, CH4 and N2 relevant to the atmosphere of Titan are
given in

• Courtin R, 1988: Pressure-Induced Absorption Coefficients for Radiative Transfer Calcula-
tions in Titan’s Atmosphere, Icarus, 75, pp 245-254.

The water vapor continuum is described in the following two papers:

• Clough SA, Kneizys FX and Davies RW ,1989: Line shape and the water vapor continuum,
Atmospheric Research, 23, pp 229-241.

• Grant WB,1990: Water vapor absorption coefficients in the 8-12 µm spectral region: A
critical review, Applied Optics, 29, pp 451-462.

The first of these is considered the standard reference at time of writing, but one must take care
in reading it, as there are a certain number of typographical errors and mislabeled figures.
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The full-featured ccm radiation code is described in complete and somewhat intimidating
detail as part of the general description of the NCAR Community Atmospheric Model (CAM) in
NCAR Technical Note TN-464+STR, available at the time of writing at http://www.ccsm.ucar.edu/models/atm-cam/docs/description/.
An accessible overview of an earlier version of the radiation model can be found in

• Kiehl J and Briegleb B 1992: Comparison of the Observed and Calculated Clear Sky Greenhouse-
Effect - Implications for Climate Studies, J. Geophys. Res, 97 (D9), 10037-10049.

A version of this radiation code with a simple Python user interface is distributed as part of the
software supplement to this book. The Python interface makes it easy to use the code to compute
OLR and heating rates within a Python script, and eliminates the need for any familiarity with
the FORTRAN language in which the underlying computation is written.
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Chapter 5

Scattering

5.1 Overview

In the atmospheres considered so far, the blackbody source term adds new radiation to the atmo-
sphere travelling in all directions, but once present in the atmosphere radiation travels in a fixed
direction; it can be absorbed as it travels, but it does not scatter into other directions. In this class
of problems, the two-stream approximation consists entirely in doing the calculation for a single
equivalent propagation angle θ̄, but does not change the essential structure of the full problem.
If one wanted more information about the angular distribution, one would simply do the same
problem over several times, with different θ, and average the results to get the net upward and
downward fluxes; each calculation is independent, and has the form of a simple first order ordinary
differential equation for the flux. With scattering the situation is very different, as the scattering
couples the flux at one angle with the fluxes at all other angles. The full problem now takes the
form of a computationally demanding integro-differential equation, with the derivative of the flux
at a given angle expressed as a weighted integral over the fluxes at all other angles.

Light with wavelengths in the near-infrared or shorter is signficantly scattered from molecules,
though molecules are too small to appreciably scatter thermal infrared or longer wavelengths. Many
atmospheres (Earth’s included) contain very fine aerosol particles with diameters on the order of
a micrometer or less; they are typically made of mineral dust, or of condensed substances such as
sulfuric acid or other sulfur compounds. They are very powerful scatterers of solar radiation, and
therefore can significantly affect a planets’s albedo even when the total mass of aerosols is quite
small. Cloud particles made of various condensed substances have typical diameters of 10-100 mi-
crometers. Because water clouds like Earth’s absorb so strongly in the infrared, cloud scattering is
often thought of primarily in terms of the solar spectrum. However, taking a broader view, cloud
substances commonly found on other planets have a very important thermal infrared scattering
effect. Water clouds are the exception, rather than the rule, but because of their importance
on Earth, thermal infrared scattering by clouds is a far less developed subject than is shortwave
scattering.

Clouds, in their many and varied manifestations, pose one of the greatest challenges to
the understanding of Earth and planetary climate. On Earth, water clouds reflect a great deal
of sunlight but also have a considerable greenhouse effect. The net cloud effect is a fairly small
residual of two large and uncertain terms, and the way the two effects play out against each other
plays a central role in climate change problems extending from the Early Earth to Cretaceous
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Warmth, to ice ages, to global warming, and the distant-future fate of our climate. The high
albedo of Venus is caused largely by clouds made of sulfur dioxide and sulfuric acid droplets, but
the very same clouds are effective infrared scatterers and help to increase the planet’s greenhouse
effect. On an Early Mars with a 2 bar CO2 atmosphere, formation of clouds of CO2 ice would
play an important role in the planet’s climate, both in the infrared nd solar spectrum. Titan’s
present-day methane clouds affect the satellite’s radiation budget both through infrared and visible
scattering; Neptune is cold enough that methane ice clouds can form in parts of its atmosphere.
The swirling psychedelic colors of Jupiter and Saturn arise from clouds of a dozen or more different
types, which no doubt also affect the radiation budget. It will turn out that the radiative effects
of clouds are highly sensitive to the size of the particles of which they are composed. This leads
to the disconcerting conclusion that the climate of an object as large as an entire planet can be
strongly affected by poorly-understood processes happening on the scale of a few micrometers.

Scattering calculations play a critical role not only in determining planetary radiation bal-
ance, but also in interpreting a wide range of observations of the Earth, Solar System planets,
and extrasolar planets. There is no doubt that if justice were to be served (and the reader had
unlimited time) scattering should be a treatment at least as in-depth as that which we have ac-
corded to purely absorbing/emitting atmospheres. However, in order to maintain progress towards
our primary goal of understanding the essentials of planetary climate, the treatment given in this
chapter will be highly abbreviated, and focus on the minimal understanding of the subject needed
to estimate planetary albedo, shortwave atmospheric heating, and the basic effect of clouds on
outgoing infrared radiation and on solar absorption. In particular, we will leap directly into the
two-stream approximation, without much discussion of the properties of the scattering equations
in their full generality. Were it not for the position of clouds at the forefront of much research on
planetary climate, we would be content to leave the discussion of scattering to a few brief remarks
concerning planetary albedo.

5.2 Basic concepts

The atmosphere can be considered to be a mix of particles, some of which absorb, some of which
scatter, and some of which do both. The particles could be molecules, or they could be macroscopic
particles of a condensed substance, as in the case of cloud droplets or dust particles. One builds
up the absorbing and scattering properties of the atmosphere as a whole from the absorbing
and scattering properties of the individual particles. In keeping with the usage in the preceding
chapters, we will ultimately characterize the effect of atmospheric composition on radiation in
terms of scattering properties per unit mass of atmosphere, just as we did for the absorption
coefficient.

Consider a parallel, monochromatic (single-frequency) beam of light with flux F in W/m2

travelling in some specific direction. When the beam encounters a particle of finite extent, a certain
amount of the flux will be absorbed, and a certain amount will be scattered into other angles. The
rate at which energy is taken out of the beam by absorption and scattering can be characterized in
terms of coefficients with dimensions of area, which are known as cross-sections. The rate of energy
absorption is Fχabs, where χabs is the absorption cross-section, and the rate of energy scattering
into other directions is Fχsca, where χsca is the scattering cross-section 1. The scattering and
absorption cross-sections can be quite different from the actual cross-section area of the object.
The cross-sections can be thought of as the cross-section areas of hypothetical equivalent objects

1The more usual notation for the cross-section is σ, but in our subject matter that symbol has been reserved for
the Stefan-Boltzman constant. One can think of χ as standing for χρωσσ-section.
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Figure 5.1: Definition of propagation angles (left) and scattering angle (right).

which absorb or scatter all light hitting the object while leaving the rest of the beam to pass by
undisturbed. The ratio of scattering cross-section to the actual cross-section area of the scatterer is
called the scattering efficiency, Qsca. For a spherical particle of radius r, Qsca = χsca/(πr2). The
absorption efficiency is defined similarly. For spherical particles, the cross sections are independent
of the angle at which the radiation is directed at the particle. For non-spherical particles the cross-
sections for an individual particle depend on angle, but the typical physical situation involves
scattering off of an ensemble of particles presented with random orientations. In this case, we
can average over all orientations and represent the mean scattering or absorption in terms of the
cross-section for an equivalent sphere. This approach can break down if particles are not randomly
oriented, as can be the case for plate-like ice crystals that become oriented through frictional drag
forces as they fall. The single-scattering albedo for a particle is the ratio of flux of the incident beam
lost via scattering to net flux lost. Using the notation ωpo for the single-scattering albedo of an
individual particle, we have ωpo = χsca/(χsca +χabs). Later we will introduce the single-scattering
albedo for the medium as a whole. The cross sections for particles or molecules can be measured
in the laboratory, and often can be computed from basic physical principles.

Since the radiation fields we will deal with are generally distributed over a range of frequen-
cies and direction, instead of being monochromatic and unidirectional, we will write our equations
in terms of the spectral irradiance I introduced in Chapters 3 and 4. Recall that if the spectral
irradiance is I((θ, φ), ν) at a given point, then IdΩdν is the flux of radiation in frequency band dν
with directions of travel within a solid angle dΩ about the direction (θ, φ), which passes through
a plane perpendicular to the direction of travel. To apply the results of the preceding paragraph
to smoothly distributed radiation, one needs only to substitute IdΩdν for the incident flux F .

As in previous chapters, we’ll make the plane-parallel assumption, and assume that I de-
pends on position only through pressure. Suppose that in the vicinity of some pressure level p
there are N scatterers of type i per unit mass of atmosphere, and that each scatterer has mass
mi. Suppose that the light impinging on the layer is traveling with angle θ to the vertical. Then,
taking a layer of thickness dp which is small enough that multiple scattering can be neglected, the
rate of energy lost by the incident beam due to absorption and due to scattering into different
angles is

− dp

g cos θ
N · (χabs,i + χsca,i)IdΩdν = − dp

g cos θ
qi · (

1
mi

χabs,i +
1

mi
χsca,i)IdΩdν (5.1)
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where qi is the mass concentration of the particles in question. From this we can define the
absorption coefficient of the substance κi ≡ χabs,i/mi which has units of m2/kg. This absorption
coefficient is the same quantity we defined in Chapter 4 in connection with gaseous absorption.
The additional term in the above equation characterizes the energy lost from the incident beam
due to scattering. We won’t introduce separate notation for this term since scattering is most
commonly characterized in terms of the cross section itself.

If there is only one optically active substance i in the atmosphere, we define the optical
depth in the vertical direction by the equation

dτ∗

dp
= −1

g
(κi +

1
mi

χsca,i)qi (5.2)

Because the absorbing and scattering properties typically depend on wavenumber, the optical
depth is generally a function of wavenumber, though we will only append a wavenumber subscript
to τ∗ when we wish to call attention specifically to the wavenumber dependence. If there are many
types of scatterers and absorbers – which could include particles of a single substance but with
different sizes – then we define the optical depth by summing over all species. Thus

dτ∗

dp
= −1

g
(κ +

∑
i

1
mi

χsca,iqi) (5.3)

where the net absorption coefficient is
κ ≡

∑
i

κiqi (5.4)

We then define the single-scattering albedo for the medium as a whole as

ωo ≡
∑

qiχsca,i/mi

κ +
∑

qiχsca,i/mi
(5.5)

The pair (κ, ωo) constitutes the basic description of the absorption and scattering properties of
the medium. Both are typically functions of wavelength and altitude, and may also directly be
functions of pressure and temperature. If the medium consists of only a single type of particle,
and the gas in which the particles are suspended neither absorbs nor scatters, then ωo = ωpo. In
general, though, the single-scattering albedo of the medium depends on the mix of absorbers and
scatterers. For example, an atmosphere may consist of a mix of cloud particles which are perfect
scatterers (ωpo = 1) with a strong greenhouse gas which is an absorber. In this case, ωo will go
down as the greenhouse gas concentration increases, even if the cloud particle concentration is kept
fixed.

Using the definition of optical depth, Eq 5.1 for the rate of energy loss from the beam can
be rewritten as simply dI = −Idτ∗/ cos θ. Since the vertical component of flux is I cos θ, this
expression can be recast as an expression for the rate of loss of vertical flux, namely

dI cos θ = −Idτ∗ (5.6)

The proportion of this lost to scattering is ωo while the proportion lost to absorption is 1 − ωo.
The fate of the energy lost to absorption is different from the fate of that lost due to scattering.
The former disappears into the pool of atmospheric heat, whereas energy lost to scattering from
one beam reappears as flux in a range of other directions, so we need to keep track of the two loss
mechanisms separately. The beam loss in a given direction is offset by two source terms: one due
to thermal emission, and one due to scattering from other directions. The thermal emission term is
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proportional to the Planck function, and can be treated in a fashion similar to that used in deriving
the Schwartzschild equations. We’ll leave the thermal emission out for now, and concentrate on
scattering; the thermal emission term will be put back in in Section 5.5.

To understand better where the scattered flux goes, consider the energy budget for a box
of thickness dτ∗ in the vertical, shown from the side in Figure 5.2. Since the radiation field is
independent of the horizontal dimensions, the flux entering the box from the side is the same
as the flux leaving it from the side, and does not affect the budget. If the base of the box
has area A, an amount A · I(τ∗) cos θ enters the box from the bottom and a somewhat lesser
amount A · I(θ, φ, τ∗ + dτ∗) cos θ leaves the box from the top. Taking the difference gives the loss
of energy from the beam per unit time, due to scattering and absorption. Using Eq. 5.6 this
can be written as simply A · I(θ, φ, τ∗)dτ∗; it doesn’t matter whether I is evaluated at dτ∗ or
τ∗ + dτ∗ in this expression, since dτ∗ is presumed small. The energy per unit time scattered and
restributed into all other directions is then A ·ωoI(θ, φ, τ∗)dτ∗. Now, to write an equation for how
the vertical component of flux changes between τ∗ and τ∗ + dτ∗, we need to find how much flux is
added to the direction (θ, φ) by scattering from all other directions of radiation impinging on the
layer. We can do this by considering the incident radiation one direction at a time, and summing
up. Consider a beam of light traveling with direction (θ′, φ′), having radiance I(θ′, φ′, τ∗). The
scattering contributed to direction (θ, φ) comes from the scatterers in the shaded parallelogram
shown in FIgure 5.2, which is greater than the amount of scatterer in a rectangular box by a
factor of 1/ cos θ. Further, only a proportion of the radiation scattered from the contents of the
parallelogram goes into the direction (θ, φ), We will write this proportion as P/4π, where P depends
on both the incident and scattered directions. Thus, the radianced contributed to direction (θ, φ)
by scattering is A · (P/4π)ωoI(θ′, φ′, τ∗)dτ∗/ cos θ, and the vertical component of this is obtained
by multiplying by cos θ, yielding A · (P/4π)ωoI(θ′, φ′, τ∗)dτ∗. This is the vertical flux contributed
by scattering, and is added in to the flux leaving the top of the box. The scattering acts as a
source of radiation in direction (θ, φ), which is added to the right hand side of Eq. 5.6. Dividing
out the area of the base of the box, the flux balance for the box becomes

dI(θ, φ) cos θ = −I(θ, φ)dτ∗ +
ωo

4π
P (θ, φ, θ′, φ′)I(θ′, φ′)dτ∗ (5.7)

if one considers only the flux contributed by scattering of a single direction (θ′, φ′) . To complete
the equation, one must integrate over all incident angles (θ′, φ′). To determine the radiation field
in its full generality, it is necessary to satisfy the flux balance for each direction of propagation
simultaneously. Before proceeding toward that goal, we’ll check Eq. 5.7 to verify that the scattered
energy is conserved. Applying the control volume sketch to the incident beam direction, we infer
that the incident beam traveling in direction (θ′, φ′) deposits energy in the control volume at a
rate I(θ′, φ′)dτ∗ (per unit area). A proportion ωoP/4π of this should show up as an increase in the
energy in the box propagating in direction (θ, φ), and that is precisely the source term appearing
in Eq 5.7 The books are indeed balanced.

It is worth thinking quite hard about Figure 5.2, because the cosine terms that appear in
such computations – and which are the source of most of the difficulties in writing two-stream
approximations – can be quite confusing. The cosine weights play two quite different roles. In one
guise, they express the number of scatterers or absorbers encountered along a slanted path, but in
another guise they represent the projection of the flux on the vertical direction. Most confusion
can be resolved by thinking hard about the energy budget of the control volume.

The quantity P introduced in Figure 5.2 is called the phase function, and describes how
the scattered radiation is distributed over directions. For spherically symmetric scatterers, the
phase function depends only on the angle Θ between the incident beam and a scattered beam (as
depicted in Fig. 5.1). The phase function is usually expressed as a function of cos Θ. If n̂I is the
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unit vector in the direction of propagation of the incident beam, and n̂sca is the unit vector in the
direction of propagation of some scattered radiation, then

cos Θ = n̂I · n̂sca = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′) (5.8)

where θ and φ are the direction angles of the incident beam and θ′ and φ′ are the angles of
the scattered beam under consideration. The phase function for the medium as a whole can be
determined from the phase functions of the individual particles doing the scattering – remember
that from ωo and dτ∗ we already know the amount of energy scattered out of a beam, so the
phase function only needs to tell us how that energy is distributed amongst directions. The phase
function for an individual particle is defined in such a way that the scattered flux within an element
of solid angle dΩ′ near direction (θ′, φ′) is χscaI(θ, φ)P (cos Θ(θ, φ, θ′, φ′))dΩ′/4π. P is normalized
such that

∫
PdΩ′ = 4π, so that integrating the scattered flux over all solid angles yields χscaI.

Note further that∫
P (cos Θ)dΩ = 2π

∫ 1

−1

P (cos Θ)d cos Θ =
∫

P (cos Θ)dΩ′ = 4π (5.9)

where solid angle integrals without limits specified explicitly denote integration over the entire
sphere. The final equality is a matter of definition and the other two equalities follow because one
is free to rotate the coordinate system so as to define the angles with respect to any chosen axis,
if one is integrating over the entire sphere. Isotropic scattering, in which the scattered radiation is
distributed uniformly over all angles, is defined by P = 1.

If the scatterers in the atmosphere are all identical particles, then the phase function for
the medium is the same as the phase function for an individual particle. If the phase functions
differ from one particle to another, then the phase function for the medium is simply the average
of the individual particle phase functions, weighted compatibly with Eq 5.3. The averaging is
particularly important when the particles are non-spherical. Though the phase function for any
individual particle is not a function of cos Θ alone, the particles are generally oriented in random
directions, and the average phase function for an ensemble of randomly oriented particles acts like
the phase function for an equivalent sphere.

If one divides Eq 5.7 by dτ∗ and integrates over all incident directions (θ′, φ′) the equation
for the vertical component of the flux due to radiation traveling in direction (θ, φ) is found to be

d

dτ∗
I(cos θ, φ) cos θ = −I(cos θ, φ) +

ωo

4π

∫
P (cos Θ)I(cos θ′, φ′)dΩ′ (5.10)

where cos Θ is given in terms of (θ, θ′, φ−φ′) by Eq. 5.8. Thermal emission would add an additional
source term B(ν, T (τ∗)) to the right hand side, but we shall leave that out for now. This is the full
equation whose solutions give the radiation field. The integral couples together all directions of
propagation; if one approximated the integral by a sum over 100 angles, for example, the equation
would be the equivalent of solving a system of 100 coupled ordinary differential equations. While,
with modern computers, this is not so overwhelming a task as it once might have seemed, it is still
intractible in typical climate calculations, where one is doing the calculation for each of a large array
of wavenumbers, at each time step of a radiative-convective model, and perhaps for each latitude
and longitude grid point in a general circulation model as well. Moreover, it is always helpful to
have a simplified form in hand if one’s goal is understanding and not merely computing a number.
Hence, our emphasis will be on reduction of the equation to an approximate set of equations for
two streams of radiation, which may be thought of as the upward and downward streams. In this
section we’ll derive some exact constraints, which will be used to obtain two-stream closures of the
problem in Section 5.5.
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We first need to define the upward and downward fluxes, which are

I+ ≡
∫

Ω+
I(cos θ, φ) cos θdΩ =

∫ 1

cos θ=0

∫ 2π

0

I(cos θ, φ) cos θdφd cos θ

I− ≡ −
∫

Ω−
I(cos θ, φ) cos θdΩ = −

∫ 0

cos θ=−1

∫ 2π

0

I(cos θ, φ) cos θdφd cos θ

(5.11)

The fluxes are defined in such a way that both are positive numbers. Given that dΩ can be
written as d cos θ · dφ it is convenient to write all the fluxes as a function of cos θ, as we have
done here. Henceforth we shall use Ω+ and Ω− as shorthand for integral over the upward or
downward hemisphere, respectively. With these definitions, the net vertical flux (positive upward)
is I+ − I− =

∫
I cos θdΩ, the integral being taken over the full sphere.

Solar radiation enters the top of the atmosphere in the form of a nearly parallel beam of
radiation, characterized by an essentially unique angle of propagation. It is gradually converted by
scattering into radiation that is continuously distributed over angles. Because the incoming solar
radiation has an angular distribution concentrated on a single direction of propagation, it is useful
to divide the radiation up into a direct beam component propagating exactly in this direction, and
a diffuse component, travelling over all angles. You can see the Sun as a sharply defined disk in
clear sky, which shows that the direct-beam solar radiation isn’t completely converted into diffuse
radiation by scattering, except perhaps in heavily cloudy conditions. To define the direct beam
flux, let L� be the solar constant and ζ be the angle between the vertical and the line pointing
toward the Sun; ζ is called the zenith angle. By convention, the zenith angle is defined as the angle
of the vector pointing toward the Sun, rather than the direction of the rays coming from the Sun.
Thus, if θdir is the angle of the direct-beam radiation in our usual angle coordinate system, the
zenith angle is ζ = π − θdir. The azimuth angle of the direct beam radiation φdir is defined in the
usual coordinate system.

Now, since the direct beam flux is concentrated in a single direction, there is essentially
zero probability of any scattered flux contributing back into the exact direct beam direction. That
would be like the exactly hitting an infinitesimal dot on a dartboard. Therefore, flux is scattered
out of the direct beam but is never added into it, and the direct beam decays exponentially. Making
use of the slant path, the direct beam flux is then L� exp(−(τ∗∞ − τ∗)/ cos ζ). We rewrite the flux
as the sum of a diffuse component and the direct beam:

I(cos θ, φ) = Idiff (cos θ, φ) + L� exp(−(τ∗∞ − τ∗)/ cos ζ)δ(θ − (π − ζ))δ(φ− φdir) (5.12)

where Idiff is the diffuse flux and δ is the Dirac delta-function. From now on, for economy
of notation we’ll drop the ”diff” subscript on the diffuse radiation and simply write I for the
diffuse component. In typical situations, the top-of-atmosphere boundary condition states that
the radiance of all downward-directed angles of the diffuse component must vanish.

Substituting into Eq 5.10, the equation for the diffuse flux becomes

d

dτ∗
I(cos θ, φ) cos θ =− I(cos θ, φ) +

ωo

4π

∫
P (cos Θ)I(cos θ′, φ′)dΩ′

+ L�
ωo

4π
P (cos Θ(− cos ζ, cos θ, φ− φdir) exp (−(τ∗∞ − τ∗)/ cos ζ)

(5.13)

The scattering from the direct beam acts as a source term for the diffuse radiation. Integrating
over all angles yields the following exact expression for the net vertical diffuse flux

d

dτ∗
(I+ − I−) = −(1− ωo)

∫
I(cos θ′, φ′)dΩ′ + ωoL� exp (−(τ∗∞ − τ∗)/ cos ζ) (5.14)
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since
∫

P (cos Θ)dΩ = 4π. In this expression, I+ and I− now represent just the diffuse part of the
flux. Conservative scattering – that is, scattering without absorption – is defined by ωo = 1. For
conservative scattering the first term on the right hand side of Eq. 5.14 vanishes. Integrating the
direct beam term with respect to τ∗ just multiplies it by cos ζ, whence we are left with the result
that I+− I−−L� cos ζ exp (−(τ∗∞ − τ∗)/ cos ζ) is a constant. Thus, for conservative scattering the
sum of the direct beam vertical flux – which is negative because it is downward – with the diffuse
flux is independent of height. As the direct beam is depleted, the flux lost goes completely into
the diffuse component. This is as it should be, because, in conservative scattering, the flux lost
has no place else to go.

Eq. 5.14 provides the first of the two constraints needed to derive the two-stream approxi-
mations. The second constraint is provided by multiplying Eq 5.13 by a function H(cos θ) which
is antisymmetric between the upward and downward hemispheres, and then performing the angle
integral. The rationale for multiplying by an antisymmetric function is that we already know
something about I+ − I− from the first constraint, and weighting by an antisymmetric functions
gives us some information about I+ + I−. Multiplying by H and carrying out the angle integral,
we get

d

dτ∗

∫
I(cos θ, φ)H(cos θ) cos θdΩ =−

∫
IH(cos θ)dΩ + ωo

∫
G(cos θ′)I(cos θ′, φ′)dΩ′

+ ωoL�G(− cos ζ) exp (−(τ∗∞ − τ∗)/ cos ζ)
(5.15)

where
G(cos θ′) =

1
4π

∫
H(cos θ)P (cos Θ(cos θ, cos θ′, cos φ))dΩ (5.16)

We were free to replace cos(φ − φ′) in this expression by cos φ, since the integral is taken over
all angles φ and so a constant shift of azimuth angle does not change the value of the integral.
Sinced H is assumed antisymmetric, the function G(cos θ′) characterizes the up-down asymmetry
of scattering of a beam coming in with angle θ′. The symmetry properties of cos Θ imply that
G(− cos θ′) = −G(cos θ′).

Exercise 5.2.1 Derive the claimed antisymmetry property of G.

If the phase function satisfies P (cos Θ) = P (− cos Θ) the scattering is said to be symmetric.
For symmetric scatterers, there is no difference between scattering in the forward and backward
directions. From Eq. 5.8 it follows that cos Θ(cos θ, cos θ′, φ) = − cos Θ(− cos θ, cos θ′, φ + π). The
antisymmetry of H(cos θ) then implies that G vanishes if P is symmetric, since the contribution
to the integral from (cos θ, φ) cancels the contribution from (− cos θ, phi + π). For symmetric
scattering, Eq. 5.15 takes on a particularly simple form, since both terms proportional to ωo

vanish. The physical content of this result is that symmetric scattering does not directly affect the
asymmetric component of the diffuse radiation, since equal amounts are scattered into the upward
and downward directions.

When the scattering isn’t symmetric, the terms involving G do not vanish, and we need a way
to characterize the asymmetry of the phase function. The most common measure of asymmetry is
the cosine-weighted average of the phase function

g̃ ≡ 1
2

∫ 1

cos Θ=−1

P (cos Θ) cos Θd cos Θ (5.17)

which goes simply by the name of the asymmetry factor. The asymmetry factor vanishes for
symmetric scattering. All radiation is backscattered in the limit g̃ = −1, as if the scattering
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particles were little mirrors. When g̃ = 1 there is no back-scatter at all, and all rays continue in
the forward direction, though their direction of travel is altered by the particles, much as if they
were little lenses.

The asymmetry factor g̃ characterized forward-backward scattering asymmetry relative to
the direction of travel of the incident beam, but some tedious manipulations with Eq. 5.8 allow one
to show that the same factor characterizes cosine-weighted asymmetry in the upward-downward
direction, regardless of the direction of the incident beam. Specifically, if the incident beam has
direction (φ′, θ′), then

1
4π

∫
P (cos Θ(cos θ, cos θ′, cos φ)) cos θdΩ = g̃ cos θ′ (5.18)

where dΩ = dφ·d cos θ as usual. This leads to a particularly tidy result if we choose H(cos θ) = cos θ
in Eq. 5.15, since then G(cos θ′) = g̃ cos θ′ and the antisymmetric projection of the scattering
equation becomes

d

dτ∗

∫
I(cos θ, φ) cos2 θdΩ = −(1− ωog̃)(I+ − I−) + ωoL�g̃ cos ζ exp (−(τ∗∞ − τ∗)/ cos ζ) (5.19)

The integral appearing on the left hand side is sensitive only to the symmetric component of the
radiance field. In order to obtain a two-stream closure, it is necessary to express the integral in
terms of I+ + I−, which requires making an assumption about the angular distribution of the
radiation. The same assumption applied to the right hand side of Eq. 5.14 allows one to estimate∫

IdΩ in terms of I+ + I−. The different forms of two-stream approximations we shall encounter
correspond to different assumptions about the angular distribution of radiance.

For other forms of H the asymmetry function G(cos θ′) has more complicated behavior that
is not so simple to characterize. The other form of H we shall have occasion to deal with is

H(cos θ) =

{
1 for cos θ ≥ 0,

−1 for cos θ < 0,
(5.20)

which is used to derive the hemispherically-isotropic form of the two-stream equations. This choice
is convenient because the left hand side of Eq. 5.15 reduces to the derivative of I+ + I−, but it
is inconvenient because G no longer has a simple cosinusoidal dependence on the incident angle.
One could simply compute G from the phase function for the medium and use this to form the
weights in the scattering equation, but given the inaccuracies we already accept in reducing the
problem to two streams, it is hardly worth the effort. Instead, we will approximate G as having a
cosinusoidal dependance as it does in the previous case. This approximation is exact if the phase
function has the form P = 1 − 1

3b + a cos Θ + b cos2 Θ, and one can add a third and fourth order
term without very seriously compromising the representation. By carrying out the integral defining
the asymmetry factor, we find that g̃ = 1

3a. Then, evaluating G for the assumed form of phase
function we find G = 1

2a cos θ′ = 3
2 g̃ cos θ′. With this result the antisymmetric scattering equation

projection becomes

d

dτ∗
(I+ + I−) = −(1− ωo

3
2
g̃)(I+ − I−) + ωoL�

3
2
g̃ cos ζ exp (−(τ∗∞ − τ∗)/ cos ζ) (5.21)

The right hand side becomes precisely the same as Eq. 5.19 if we redefine the asymmetry factor
to be 3

2 g̃. Eq. 5.21 is already written in terms of the upward and downward stream, and needs no
further approximation in order to be used to derive a two-stream approximation. To complete the
derivation of the hemispherically isotropic two-stream equation, one need only write the integral
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∫
IdΩ appearing in Eq. 5.14 in terms of I++I− using the assumed angular distribution of radiance.

If I is assumed hemispherically isotropic in forward and backward directions separately, then this
integral is in fact 2(I+ + I−), which completes the closure of the problem.

There is one last basic quantity we need to define, namely the index of refraction, which
characterizes the effect of a medium on the propagation of electromagnetic radiation. It will turn
out that the index of refraction amounts to an alternate way of representing the information already
present in the scattering and absorption cross-sections. For a broad class of materials – including
all that are of significance in planetary climate – the propagation of electromagnetic radiation in
the material is described by equations that are identical to Maxwell’s electromagnetic equations,
save for a change in the constant that determines the speed of propagation (the ”speed of light”).
In particular, the equations remain linear, so that the superposition of any two solutions to the
wave equations is also a solution, allowing complicated solutions to be built up from solutions
of more elementary form. The reduction in speed of light in a medium comes about because the
electric field of an imposed wave induces a dipole moment in the molecules making up the material,
which in turn gives rise to an electric field which modifies that of the imposed wave. The equations
remain linear because the induced dipole moment for non-exotic materials is simply proportional
to the imposed electric field. When the medium is nonabsorbing, the ratio of the speed in a vacuum
to the speed in the medium is a real number known as the index of refraction.

The physical import of the index of refraction is that, at a discontinuity in the index such as
occurs at the surface of a cloud particle suspended in an atmosphere, the jump in the propagation
speed leads to partial reflection of light hitting the interface, and deflection (refraction) of the
transmitted light relative to the original direction of travel. The larger the jump in the index of
refraction, the larger is the reflection and refraction. To a considerable extent, the refraction of
light upon hitting an interface can be understood in terms of a particle viewpoint. If one represents
a parallel beam of light as a set of parallel streams of particles all moving at speed c1 in the outer
medium, then if the streams hit an interface with a medium where the speed it c2 < c1, then
the streams that hit first will be slowed down first, meaning that the wave front will tilt and the
direction of propagation of the beam will be deflected toward the normal, as shown in Figure 5.3.
The classic analogy is with a column of soldiers marching in line, who encounter the edge of a
muddy field which slows the rate of march. If Θ1 is the angle of incidence relative to the normal to
the interface, and Θ2 is the angle of the refracted beam on the other side of the interface, then the
deflection due to the change in speed is described by Snell’s Law, which states c2 sinΘ1 = c1 sinΘ2,
or equivalently sinΘ2 = (n1/n2) sinΘ1. Now, if a beam is traveling within the medium at angle
Θ2 and exits into a medium with lower index of refraction (e.g. glass to air), then the angle of
the exiting beam is given by sinΘ1 = (n2/n1) sinΘ2; hence, the beam is deflected away from the
normal, as indicated in the sketch. At such an interface, if (n2/n1) sinΘ2 > 1 then there is no
transmitted beam and the ray is refracted so much that it is totally reflected back into the medium
– a phenomenon known as total internal reflection. In reality, there is always some partial reflection
at an interface. Partial reflection, as well as many other phenomena we shall encounter, depends
on the wave nature of light as described by Maxwell’s equations, and cannot be captured by the
”corpuscular” viewpoint. This was as much of a groundbreaking conceptual challenge for early
optical theorists as blackbody radiation was for investigators presiding over the dawn of quantum
theory.

The concept of index of refraction can be extended to absorbing media. Suppose that a
plane wave propagating through the medium has spatial dependence exp(2πikx), where x is the
distance measured in the direction of propagation. Then, the expression for the speed of the wave
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Figure 5.3: Refraction of a beam of light at an interface between a medium with index of refraction
n1 and a medium with index of refraction n2. In the sketch, n2 > n1 so the speed of light is slower
in the medium than in the surroundings, as is the case for glass or water in air.

in terms of its frequency and wavenumber becomes

ν

k
=

1
n

c (5.22)

where c is the speed of light in a vacuum. Thus k = (ν/c)n. Note that ν/c is the vacuum
wavenumber we have been using all along to characterize radiation. For real n, k is the wavenumber
in the medium, which is larger than the vacuum wavenumber by a factor of n. If we allow n to be
complex, its imaginary part characterizes the absorption properties of the medium. To see this,
write

kR + ikI =
ν

c
nR + i

ν

c
nI (5.23)

Since the wave has spatial dependence exp(2πikx) = exp(wπikrx) exp(−2πkix), the coefficient
2πki = 2πnI(ν/c) gives the attenuation of the light by absorption, per unit distance travelled.
Note that because of the factor ν/c, the quantity 2πnI gives the attenuation of the beam after it
has traveled by a distance equal to one wavelength of the light. Hence nI = 1 corresponds to an
extremely strong absorption. Visible light traveling through such a medium, for example, would
be almost completely absorbed by the time it had traveled one micrometer.

The absorption coefficient kI is proportional to the absorption cross section per unit mass
we introduced in Chapter 4, and which reappeared above in the context of absorption by particles.
If the density of the medium is ρ, the corresponding mass absorption coefficient is κ = 2πkI/ρ =
n · (ν/c)/ρ. In mks units, this quantity has units of m2/kg, and is thus an absorption cross section
per unit mass.

The real index of refraction for some common cloud-forming substances is given in Table
5.1. The index of refraction for these and similar substances lies approximately in the range 1.25
to 1.5, and is only weakly dependent on wavenumber; data also shows the index of refraction to
depend only weakly on temperature. The weak dependence of index of refraction on wavelength
does give rise to a number of readily observable phenomena, such as separation of colors by a
prism or the droplets that give rise to rainbows, but such phenomena, beautiful as they are, are of
little importance to planetary energy balance. The one exception to the typically gradual variation
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Thermal-IR Near-IR Solar UV-B
Liquid water 1.40 1.31 1.33 1.43
Water ice 1.53 1.29 1.31 1.39
CO2 ice 1.45 1.40 1.41 1.54
Liquid CH4 1.28 1.27 1.27 1.49
H2SO4 38% 1.56 1.36 1.38 1.53
H2SO4 81% 1.41 1.51 1.44 1.58

Table 5.1: Real part of the index of refraction for selected condensed substances. Thermal-IR data
is at 600 cm−1, Near-IR is at 6000 cm−1, Solar at 17000 cm−1 (.59 micrometers), and UV-B at
50000 cm−1 (.2 micrometers. Liquid water data was taken at a temperature of 293K, water ice
at 273K, CO2 ice at 100K, liquid methane at 112K and H2SO4 at approximately 270K. The
percentage concentrations given for the latter are in weight percent.

of the real index of refraction occurs near spectrally localized absorption features; the real index
also has strong variations in the vicinity of such points. In considering the scattering of light by
particles suspenden in an atmospheric gas, the index of refraction of the gas can generally be set
to unity without much loss of accuracy. A vacuum has n = 1, and gases at most densities we’ll
consider are not much different. Specifically, for a gas n − 1 is proportional to the density. At
293K and 1bar, Earth air has an index of refraction of 1.0003 in the visible spectrum. CO2 in the
same conditions has an index of 1.0004, and even at the 90 bar surface pressure of Venus has an
index of only 1.016. The resultant refraction by the atmospheric gas can be useful in determining
the properties of an atmosphere through observations of refraction from the visible through radio
spectrum, but it has little effect on scattering by cloud particles.

Insofar as the real index of refraction goes, it would appear that it matters very little what
substance a cloud is made of. The minor differences seen in Table 5.1 are far less important than
the effects of cloud particle size and the mass of condensed substance in a cloud. The absorption
properties, on the other hand, vary substantially from one substance to another, and these can have
profound consequences for the effect of clouds on the planetary energy budget. The behavior of the
imaginary index for liquid water, water ice, and CO2 ice is shown in Figure 5.4. Water and water-
ice clouds are nearly transparent throughout most of the solar spectrum; for these substances,
nI is less than 10−6 for wavenumbers between 10000cm−1 and 48000cm−1 (wavelengths between
1 micrometer and .2 micrometer, though the absorption increases sharply as one moves into
the far ultraviolet. In the thermal infrared spectrum, however, water and water-ice are very good
absorbers, having nI in excess of .1 between wavenumbers of 50 and 1000 cm−1. Such a large value
of nI implies that most thermal infrared flux would be absorbed when passing through a cloud
particle having a diameter of 10 micrometers. For this reason, infrared scattering by water and
water-ice clouds can be safely neglected, such clouds being treated as pure absorbers and emitters
of infrared. This is not the case for clouds made of CO2 ice (important on Early Mars and perhaps
Snowball Earth) or liquid CH4 (important on Titan). CO2 ice clouds are still quite transparent
in the solar spectrum, apart from strong absorption in the far ultraviolet. In constrast to water
clouds, however, they are largely transparent to thermal infrared. For CO2 ice clouds, nI is under
10−4 between 1000 and 2000 cm−1, and even between 500 and 1000 cm−1 nI is generally below .01
except for a strong,narrow absorption feature near 600 cm−1. Likewise, liquid methane has nI well
under .001 between 10 and 1200 cm−1. In both cases the infrared scattering effect of clouds can
have an important effect on the OLR, leading to a novel form of greenhouse effect. Concentrated
sulfuric acid, which makes up aerosols on Earth and the clouds of Venus, is quite transparent for
wavenumbers larger than 4000 cm−1 but the imaginary index of refraction increases greatly at
smaller wavenumbers, and in the thermal infrared sulfuric acid absorbs nearly as well as water.
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Figure 5.4: The imaginary index of refraction for liquid water, water ice, and CO2 ice.

Nonetheless, the scattering by sulfuric acid clouds has a significant effect on the OLR of Venus,
because Venus is so hot that it has considerable thermal emission at wavenumbers greater than
4000cm−1.

As a general rule of thumb, typical cloud-forming condensates tend to be very transparent in
the visible and near-ultraviolet and quite transparent in the near-infrared, but vary considerably
in their absorption properties in the thermal infrared. Most substances – whether gaseous or
condensed – are very good absorbers in the very shortwave part of the ultraviolet spectrum, with
wavelengths below .1 micrometer. For this reason, this part of the UV spectrum is often referred
to as ”vacuum UV,” because it is essentially only present in the hard vacuum of outer space.

5.3 Scattering by molecules: Rayleigh scattering

Rayleigh scattering theory is a classical (i.e. non-quantum) electromagnetic scattering theory which
began life as a theory for scattering of an electromagnetic plane wave from a small sphere with real
index of refraction n. ”Small” in this context means small compared to the wavelength of the light
being scattered. The scattering calculation is quite simple in the Rayleigh limit because the incident
electric field is nearly constant over the particle, which makes it simple to compute the induced
electromagnetic field within the particle. In essence, the electric field of the incident wave causes
charges within the particle to migrate so that positive charge accumulates on one side and negative
charge on the other, leading to a dipole moment which oscillates with the same frequency as that of
the incident wave. The index of refraction is in fact a measure of the polarizability of the medium –
the proportionality between the strength of the electric field and the strength of the dipole moment
induced. The scattered wave in the Rayleigh limit is then simply the electromagnetic radiation
emitted by an oscillating dipole, which is one of the more elementary calculations that can be done
in electromagnetic theory.
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Perhaps surprisingly, the Rayleigh theory works quite well as a description for scattering of
light from molecules, even though molecules are not dielectric spheres. It’s true that the typical
size of a molecule (e.g .0003 microns for N2) is much smaller than the wavelength of visible or even
ultraviolet light, but one might have thought that the quantum response of the molecule might
substantially affect the scattering. Certainly, Rayleigh theory does not provide a suitable basis for
computing molecular absorption of radiation, which, as we have seen in Chapter 4, is inextricably
linked to the quantum nature of the molecule. We will not go further into the reasons that a classical
theory works so much better for molecular scattering than for molecular absorption, but it is indeed
a convenient turn of events. In practice, it works fine to use spectroscopically measured absorption
coefficients to compute gaseous absorption, together with Rayleigh scattering to compute gaseous
scattering.

For a spherically symmetric scatterer, Rayleigh theory yields the following formula for the
scattering cross-section:

χsca =
8π

3
(
2π

λ
)4α2

p (5.24)

where λ is the wavelength of the incident light in vacuum, and αp is the polarizability constant of
the scatterer, which expresses the proportionality between the electric field and the induced dipole
moment. In practice, the polarizability constant is inferred from measurements of the scattering
cross section itself. It is only a weak function of wavelength. The very strong dependence of
Rayleigh scattering cross section on wavelength is notable; short waves (high wavenumbers) scatter
much more strongly than long waves (low wavenumbers). The explanation of the blue skies of Earth
is perhaps the most famous application of Rayleigh scattering: blue through violet light has shorter
wavelength than the rest of the visible spectrum, and therefore dominates the diffuse radiation
caused by scattering of the solar beam from air molecules. For scatterers that are not spherically
symmetric – and this includes all the polyatomic molecules like N2, H2 and CO2 present in most
of the atmospheres we have been considering – the dipole moment is not in the same direction
as the imposed electric field, and this effect slightly alters the expression for the scattering cross
section. Molecules in a gas are randomly oriented, and it can be shown that, averaged over all
orientations, the modified cross section consists of the symmetric cross section in Eq 5.24 multiplied
by 3(2+ δ)/(6− 7δ), where δ is the depolarization factor, which is a property of the molecule. The
depolarization factor is zero for a spherically symmetric scatterer. For our purposes, the effect of
the depolarization factor is not very consequential. It has a value of .054 for O2, of .0305 for N2

and .0805 for CO2. These lead to only a minor increase in the scattering cross section.

Using Maxwell’s equations, it can also be inferred that the index of refraction is related to
the polarizability of the molecules making up the medium via the relation

n = 1 + 2πNαp (5.25)

where N is the number of molecules per unit volume. This is a very useful relation, as it allows
one to determine Rayleigh scattering cross sections through simple measurements of the refractive
index, which can be carried out by straightforward measurement of the angle of deflection of light
as it moves from a transparent solid container (e.g. glass) into the gas.

Table 5.2 gives the measured Rayleigh scattering cross section relative to H2 for a number of
common atmospheric gases, as well as the corresponding cross-section per unit mass. The absolute
value of the cross section for H2 is given for a number of wavelengths in the caption, allowing the
actual cross sections for the other molecules to be readily computed; the values given for H2 in
the caption deviate somewhat from the 1/λ4 wavelength scaling because of the slight dependence
of index of refraction on wavelength but generally speaking it is adequate to extrapolate to other
wavelengths using the fourth-power law. He stands out as an exceptionally weak scatterer. Most
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H2 He air N2 O2 CO2 H2O NH3 CH4

χsca 1. .0641 4.4459 4.6035 3.8634 10.5611 3.3690 7.3427 10.1509
χsca/m 1. 0.0321 0.3066 0.3288 0.2415 0.4800 0.3743 0.8638 1.2689
τray 0.40653 0.01305 0.12464 0.13367 0.09818 0.19513 0.15216 0.35116 0.51585

Table 5.2: Rayleigh scattering cross sections, and cross sections per unit mass, relative to H2.
These results are based on observations of the index of refraction, and do not take into account
variations in the polarization factors. The scattering cross sections and cross sections per unit mass
for H2 are 1.4 · 10−38m2 (4.215 · 10−12m2/kg) at a wavelength of 10 micrometers, 8.270 · 10−33m2

(2.490 · 10−6m2/kg) at a wavelength of 1 micrometer, and 3.704 · 10−28m2 (.11 m2/kg) at a
wavelength of .1 micrometers. τray is the optical depth due to Rayleigh scattering at 1

2micrometer
for a 1 bar atmosphere of the indicated gas under Earth gravity.

of the rest of the molecules have scattering cross-sections per unit mass which are moderately
smaller than H2, with the exception of CH4,which is moderately larger.

To get an idea of how important the scattering is in various contexts, we can use the cross
sections per unit mass to determine the optical depth of the entire column of an atmosphere.
When the optical depth is small, the atmosphere scatters hardly at all, but when optical depth
becomes large a significant amount of radiation will be scattered; in the case of the incident Solar
radiation, this means a lot of the incident beam will be reflected back to space. The last line of
Table 5.2 gives the optical depth for an atmosphere consisting of 1 bar of the given gas under
Earth gravity. One can scale this up to other planets by multiplying by the appropriate surface
pressure, and dividing by the planets’ gravity relative to Earth gravity. The optical depth values
are given at a wavelength of 1

2micrometer, in the center of the visible spectrum, which is also
near the peak of the Solar spectrum. For Earth’s present atmosphere, the optical depth is small,
but not insignificant; Rayleigh scattering affects about 12% of the incident beam. For an Early
Mars having 2 bar of CO2 in its atmosphere, the Rayleigh scattering is quite strong, owing to the
somewhat elevated scattering cross section of CO2 relative to air, to the low gravity and to the
extra surface pressure. The Rayleigh optical depth for Early Mars would be 1.03 in the visible.
The associated reflection of solar radiation is a significant impediment to warming Early Mars
with a gaseous CO2 greenhouse effect. If one took away the reflective clouds of Venus, the CO2

Rayleigh scattering would still make Venus quite reflective, since the optical depth of a 90 bar CO2

atmosphere on Venus is nearly 20. A 1.5 bar N2 atmosphere on Titan would have an optical depth
of 1.45 in the absence of clouds. The top 10 bars of Jupiter’s mostly H2 atmosphere would have
an optical depth of 1.6, and likewise scatter significantly.

The optical depths for other wavelengths can be obtained by scaling these results according
to 1/λ4. Thus, at thermal infrared wavelengths which are 5 times or more greater than the one
we have been considering, the optical depth is at least 625 times smaller; Rayleigh scattering is
insignificant at these wavelengths, which is why it is safe to neglect gaseous scattering when doing
computations of OLR. On the other hand, the Rayleigh scattering optical depths are at least 16
times greater for ultraviolet. We will learn how to turn these optical depth values into planetary
albedos in Section 5.6.

Rayleigh scattering is not isotropic, but the phase function is symmetric between the forward
and backward direction. Within the two-stream approximation, then, we do not really need any
information beyond the scattering cross section. It is worth having a look at the phase function
anyway, if only to get an idea of how close to isotropic it is. Given the depolarization factor δ, the
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Rayleigh phase function is

P (cos Θ) =
3

2(2 + δ)
(1 + δ + (1− δ) cos2 Θ) (5.26)

From this we see that Rayleigh scattering is mildly anisotropic, with stronger scattering in the
forward and backward direction than in the direction perpendicular to the incident beam. For
δ = 0 the scattering is twice as strong in the forward and backward directions (Θ = 0, π) as it is in
the side lobes (Θ = π/2). Increasing δ reduces the anisotropy. In fact, laboratory measurements of
the intensity of side vs. forward scattering provide a convenient way to estimate the depolarization
factor.

5.4 Scattering by particles

Rayleigh theory tells us everything we need to know about scattering from the gas making up an
atmosphere, but to deal with cloud and aerosol particles, we need to know about scattering from
objects that are not small compared to a wavelength, and indeed could be considerably larger than
a wavelength, as is the case for visible light scattering from water or ice clouds on Earth. The
answer is provided by Mie theory 2, which is a general solution for scattering of an electromagnetic
wave from a spherical particle having uniform complex index of refraction. Mie theory reduces to
Rayleigh theory in the limit of small non-absorbing particles. Ice crystals and dust particles are
not spherical, and while numerical solutions are available for complex particles,for our purposes it
will prove adequate to treat such cases in terms of equivalent spheres.

The Mie solution is a solution to Maxwell’s electromagnetic equations which is asymptotic to
a plane wave at large distances from the particle, and satisfies appropriate continuity conditions on
the electromagnetic field at the particle boundary, where the index of refraction is discontinuous.
Since Maxwell’s equations are linear, the solution can be built up from more elementary solutions
to the equations, and this is how Mie theory proceeds. It furnishes the solution in terms of
an infinite sum over spherical Bessel functions, and is a real tour-de-force of early 20th century
applied mathematics. The formula is very convenient for evaluation of scattering parameters on
a computer, but it is too complicated to yield any insight as to the nature of the solution. For
that reason, we do not bother to reproduce the formula here; it is derived and discussed in the
references section for this chapter, and a routine for evaluating the Mie solution is provided as part
of the software supplement. Here we will only present some key results needed to provide a basis
for cloud and aerosol scattering in the solar spectrum and infrared.

Let no, assumed real, be the index of refraction of the medium in which the particle is
suspended. Define the Mie parameter r̄ = nor/λ, where r is the particle radius and λ is the
wavelength of the incident light in vacuum, measured in the same units as r. The relative index of
refraction is nrel = n/no, where n is the index of refraction of the substance making up the particle.
The main things we wish to compute from the Mie solution are the phase function, the scattering
efficiency, the absorption efficiency, and the asymmetry factor. These are all non-dimensional
quantities, and depend only on r̄ and nrel.

Let’s first take a look at some scattering properties in the conservative case, nI = 0. In
this case, Qabs = 0. Fig. 5.5 shows the scattering efficiency and asymmetry factor as a function
of r/λ for several different values of the real index of refraction of the scatterer. Since 1/λ is the

2The theory is named for Gustav Mie (1869-1957), who published the solution in 1908, while he was a professor
at Greifswald University in Germany.
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Figure 5.5: Scattering efficiency (left panel) and asymmetry factor (right panel) for Mie scattering
from a non-absorbing sphere. The index of refraction of the medium is unity. r is the radius of
the particle, and λ is the wavelength of the incident light measured in the same units as r.

wavenumber, the graph can be thought of as displaying the scattering properties for increasing
particle size with fixed wavenumber, or for increasing wavenumber with fixed particle size. Note
that in the limit nR → 1 there should be no scattering at all, since in that case the particle is not
optically distinct from the surrounding medium.

For any given nR, the scattering efficiency becomes small when r/λ is sufficiently small; this
is the Rayleigh limit. The scattering efficiency reaches its first peak at an order unity value of
r/λ, and the position of the first peak gets closer to zero as nR − 1 is made larger and the particle
is made more refractive. In this sense, for a given size and wavelength, particles made of more
refractive substances like CO2 ice or concentrated H2SO4 act like smaller particles than particles
made of less refractive substances like water or liquid CH4. The first peak represents the optimal
conditions for scattering. At the first peak, the scattering cross section can be 4 times or more the
actual cross-section area of the particle.

As r/λ is increased past the first peak, the scattering efficiency oscillates between values
somewhat below 2 to somewhat above 2 through a number of oscillations of decreasing amplitude,
asymptoting at a value of 2 when the particle is large compared to the wavelength. The limit of
large r/λ is the geometric optics limit, familiar from schoolbook depictions of how lenses work. In
the geometrics optic limit, a beam of light is represented as a bundle of independent parallel rays,
each of which travels in a straight line unless deflected from its course by an encounter with the
interface between the particle and the medium – once upon entering the particle, and once upon
leaving it. It is surprising that, in this limit, the scattering efficiency should asymptote to 2, since
one would be quite reasonable in thinking that rays that do not encounter the object would be
unaffected, implying Qsca = 1. What is missing from the geometric optics picture is diffraction.
Light is indeed a wave, and this has consequences that cannot be captured by the ray-tracing on
which geometric optics is based. The light encountering the sphere is a plane electromagnetic wave,
and the scattering takes a circular chunk out of it; a wave with a ”hole” in it is simply not a solution
to Maxwell’s equations, and as one proceeds past the obstacle the hole fills in with parts of the
beam that never directly encountered the obstacle. It is the diversion of this part of the incident
beam that accounts for the ”extra” scattering cross section. The nature of diffraction is far more
easily understood through examination of some elementary solutions to Maxwell’s equations than
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it is through this rather cryptic explanation, and the reader in pursuit of deeper understanding is
encouraged to study the treatment in the textbooks listed in the references to this chapter.

The main thing to take away from the preceding discussion is that refractive particles made
of common cloud-forming substances become very good scatterers when their radius is comparable
to or exceeds the wavelength of the light being scattered. The scattering cross section is two or
more times the cross section area, and for particles whose radius is more than a few times the
wavelength, the scattering efficiency is close to 2, more or less independent of what the particle is
made of, and more or less independent of wavelength. This limit applies to visible light scattering
off of typical cloud droplets, which have radii of 5 to 10 micrometers. For infrared light scattering
off of cloud particles (e.g. methane clouds on Titan or dry-ice clouds on Early Mars), or for
visible light scattering from micrometer-sized aerosol particles, the wavelength is comparable to
the particle size, and one needs to take both wavelength and index of refraction into account in
order to see how much the scattering efficiency is enhanced over the geometric-optic limit.

Turning to the right-hand panel of Figure 5.5, we see that the scattering becomes symmetric
for particles small compared to a wavelength, but becomes extremely forward-peaked for particles
of radius comparable to or larger than a wavelength. For nR = 1.25, somewhat smaller than the
value for water, the asymmetry factor is on the order of .85 for large particles. The reason for the
strong forward bias is that the large particles are rather like spherical lenses, and can bend light
somewhat from the oncoming path, but cannot easily reflect it into the backward direction. This
feature of scattering is very important in the treatment of cloud effects on the radiation budget.
The forward bias in scattering reduces the effectiveness of clouds as scatterers, and reduces their
albedos well below what one would have for layers of symmetric scatterers having the same optical
thickness. Without the forward scattering bias, clouds would be much more reflective of solar
radiation, and planets would be much colder.

A better appreciation of the strongly forward-peaked nature of Mie scattering from large
particles can be obtained by examining the phase functions shown in Figure 5.6. Almost nothing
is back-scattered, and there is a sharp spike near Θ = 0 which becomes sharper as the particle is
made larger. For r/λ = 4, 40% of the scattered flux is in the forward peak with Θ < .1radians.
When the particle is comparable in size to a wavelength, the scattering is still forward-peaked,
but much less so, with appreciable amounts of flux being scattered a half radian or more from the
original direction. Multiple scattering in this case allows a considerable amount of light to be back-
scattered relative to its original direction, though it can take several bounces before the light turns
the corner. This effect allows carbon dioxide ice clouds composed of particles of size comparable
to an infrared wavelength to be quite good reflectors of infrared light trying to escape to space.
Visible light scattering from such clouds is much more forward-peaked, and correspondingly less
efficient.

Now let’s compute the optical thickness of some typical cloud and aerosol layers. Suppose
that the layer is made up of nonabsorbing particles with a scattering efficiency Qsca. Recall that
the scattering efficiency is close to 2 for particles large compared to the wavelength, and can be
as large as 4 for particles with diameter comparable to a wavelength, but falls rapidly to zero
as the particle size is made smaller. For light in the solar spectrum, particles with diameters of
a half micrometer or more are very efficient scatterers, with particles at the small end of this
range being the most efficient. If the density of the substance making up the particle is ρ and the
particle radius is r, then χsca/m = 2πr2Qsca/( 4

3πr3ρ) = 3
2Qsca/(ρr). This is the factor by which

one multiplies the mass path of scatterer to get the optical depth. The formula implies that, for
a given mass of scatterers, small particles lead to much more scattering than large particles. 1
kg of 1 micrometer sulfate aerosol particles in a column of atmosphere yields as much scattering
as 10 kg of 10micrometer cloud droplets. The difference in index of refraction between sulfuric
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Figure 5.6: Scattering efficiency (left panel) and asymmetry factor (right panel) for Mie scattering
from a non-absorbing sphere. The index of refraction of the medium is unity. r is the radius of
the particle, and λ is the wavelength of the incident light measured in the same units as r.

acid aerosols and water droplets is of far less consequence than the difference in particle size. To
proceed, assume Qsca = 2 and ρ = 1000kg/m3. Then, for 1micrometer particles, chisca/m = 3000,
so it takes a mere 1

3000 of a kilogram – a third of a gram – of aerosol particles added to a column of
atmosphere with a one square meter base to bring the optical depth up to unity. This is the reason
that tiny amounts of aerosol forming compounds can have significant effects on planetary climate.
The small particle size also tends to make the albedo effect of aerosols dominate their greenhouse
effect, despite the fairly strong absorption coefficient of sulfuric acid in the thermal infrared. For
cloud droplets with a radius of 10 micrometers, it would take about 3 grams of water to achieve
the same optical thickness as for the smaller aerosol particles, but this is still a tiny fraction of the
water content of the atmosphere. A 1 km column of air in saturation at 280K at Earth surface
pressure contains 7.8 kg of water vapor per square meter, for example. A cloud need not weigh
much in order to have a profound effect on the albedo of a planet!

Now we’ll turn our attention to absorbing particles. Figure 5.7 shows the scattering and
absorption efficiencies for particles with nR = 1 having various nonzero values if nI . For nI = .1
and nI = .01 the absorption efficiency increases monotonically with particle size, and approaches
unity from below (for the latter of these cases, the absorption efficiency is .89 at r/λ = 100 and
.997 at r/λ = 500, outside the range plotted in the graph). This is typical behavior for particles
with nI appreciably less than unity, for which the light takes several wavelengths to decay upon
encountering the particle. Larger particles absorb more simply because the light travels a longer
distance within the particle, and has more opportunity to decay. For similar reasons, when nI

is made smaller, the particle must be made larger in order for there to be appreciable decay. In
any event, when the particle is made large enough, it essentially absorbs a portion of the incident
beam with area equal to the cross section area of the particle. Perhaps more surprisingly, though,
the scattering efficiency also rises with particle size – absorbing particle don’t just absorb; they
also deflect light from the incident direction. This is due to the same diffraction phenomenon we
encountered previously. Taking a disk out of the incident beam inevitably causes the remaining
part of the beam to be deflected from its original path. For large particles the scattering efficiency
and absorption efficiency sum to 2, with half the intercepted beam being absorbed and the other
half scattered.
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Figure 5.7: Scattering efficiency (left panel) and absorption efficiency (right panel) for Mie scatter-
ing from a partially absorbing sphere. The real part of the index of refraction is held fixed at unity
while the imaginary part is varied as indicated for each curve in the figure. Other parameters are
defined as in Fig. 5.5.

When the particles are very strongly absorbing the behavior is somewhat different,as typified
by the curve for nI = 1 in Fig. 5.7. In this case the absorption efficiency actually overshoots unity
for particles somewhat smaller than a wavelength. The particle is able to sweep up and absorb
radiation from an area larger than its cross-section, owing to the distortion of the electromagnetic
field caused by the particle itself. On the other hand, as the particle is made larger, the absorption
efficiency goes down and asymptotes to a value somewhat less than unity, because the incident
wave is not able to penetrate deeply into the particle, and instead skirts along near its surface. In
compensation, the scattering efficiency for large particles becomes greater than unity.

The above results were for particles with nR = 1, in which case there is neither scattering
nor absorption when nI approaches zero. The behavior for nR > 1 is explored in Problem ??.
When nR > 1 then the scattering cross section behavior resembles the conservative case when nI

is small, but even a small nI damps out the ripples in qsca(r) for sufficiently large particles. The
asymptotic value of qabs is still close to unity for sufficiently large particles throughout the range
of nI , but the overshoot properties differ somewhat from the case nI = 1.

As a rule of thumb, then, we can say that when particles become larger than the characteristic
decay length λ/2πnI , they absorb essentially everything within a disk of area equal to the cross
section area of the particle. The absorption efficiency is somewhat reduced for particles with
nI > .1, but even for nI = 1, which is the largest value likely to be encountered, the reduction in
efficiency is rather modest. Liquid water has nI > .1 throughout the infrared, so any liquid water
cloud droplet larger than about 10 micrometers in radius will absorb nearly all the infrared it
encounters. In fact, for liquid water nI ≈ 1 throughout most of the infrared, so that even quite
small particles are efficient absorbers. Water ice can have nI as low as .05 in some parts of the
infrared spectrum, so the particles need to be twice as large to be equally good absorbers in that
part of the spectrum, but ice clouds observed on Earth do tend to have larger particle sizes than
water clouds.
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5.5 The two-stream equations with scattering

The two stream approximations to the full scattering equation are derived from Eq. 5.14 and
Eq. 5.15 by constraining the angular distribution of the radiation in such a way as to allow all
integrals appearing in these equations to be written in terms of either I+ + I− or I+ − I−. In
the resulting equations, flux in the upward stream is absorbed, or scattered into the downward
stream, at a rate proportional to the upward stream intensity, and similarly for the downward
stream. The two-stream approximations are an instance of what physicists euphemistically like
to call ”uncontrolled approximations,” in that they are not actually exact in any useful limit but
are nonetheless physically justifiable and perform reasonably well in comparison to more precise
calculations. The two-stream approximiations have inevitable inaccuracies because it is not, in fact,
possible to precisely determine the scattering or the absorption from knowledge of the upward and
downward fluxes alone. The two-stream approximations can be thought of as the first term in a
sequence of N -stream approximations which become exact as N gets large. Fortunately, N = 2
proves sufficiently accurate for most climate problems.

The general form of a two-stream approximation for diffuse radiation is

d

dτ∗
I+ = −γ1I+ + γ2I− + γBπB(ν, T (τ∗ν )) + γ+L� exp(−(τ∗∞ − τ∗)/ cos ζ)

d

dτ∗
I− = γ1I− − γ2I+ − γBπB(ν, T (τ∗ν ))− γ−L� exp(−(τ∗∞ − τ∗)/ cos ζ)

(5.27)

where τ∗ is the optical depth in the vertical direction (increasing upward) including scattering loss.
The coefficients γj depend on frequency, on the properties of the scatterers, and on the particular
assumption about angular distribution of radiation that was made in order to derive an approximate
two-stream form from the full angular-resolved equation. We recover the hemispherically isotropic
Schwartzschild equations used in previous chapters by taking γ2 = γ+ = γ− = 0 and γ1 = γB = 2.
The terms proportional to γB represent the source due to thermal emission of radiation, while the
terms proportional to γ+ and γ− represent the source of diffuse radiation caused by scattering of
the direct beam. The direct beam is assumed to have flux L� (generally the solar constant) in the
direction of travel, and to travel at an angle ζ relative to the vertical. There is no upward direct
beam term because it is assumed that all direct beam flux scattered from the ground scatters into
diffuse radiation.

The symmetry between the coefficients multiplying I+ and I− is dictated by the requirement
that the equations be invariant in form when one exchanges the upward and downward directions.
γ1 gives the rate at which flux is lost from the upward or downward radiation, while γ2 gives the
rate of conversion between upward and downward radiation by scattering. We can derive additional
constraints on the γj . Subtracting the two equations gives us the equation for net vertical flux

d

dτ∗
(I+ − I−) = −(γ1 − γ2)(I+ + I−) + 2γBπB + +(γ+ + γ−)L� exp(−(τ∗∞ − τ∗)/ cos ζ) (5.28)

First, we demand that in the absence of a direct-beam source, the fluxes reduce to black body
radiation in the limit of an infinite isothermal medium. Since B is constant and L� = 0 in
this case, we may assume the derivative on the left hand side to vanish. Since I+ = I− = πB
for blackbody radiation, we find γB = γ1 − γ2. Comparing with Eq. 5.14 we also find that
γ+ + γ− = ωo. To further exploit Eq. 5.14 we must approximate

∫
IdΩ as being proportional

to I+ + I−. The constant of proportionality, which we shall call 2γ′, depends on the angular
distribution of radiation assumed. With this approximation it follows that γ1 − γ2 = 2γ′(1− ωo).



5.5. THE TWO-STREAM EQUATIONS WITH SCATTERING 269

Exercise 5.5.1 As a check on the above reasoning, show that in the conservative scattering limit
ωo = 1 the sum of the diffuse vertical flux with the direct beam vertical flux is constant.

Next, we sum the equations for I+ and I− to obtain

d

dτ∗
(I+ + I−) = −(γ1 + γ2)(I+ − I−) + (γ+ − γ−)L� exp(−(τ∗∞ − τ∗)/ cos ζ) (5.29)

This can be compared to the symmetric flux projection given by Eq. 5.15. Making an assumption
about the angular distribution allows one to approximate

∫
IH(cos θ) cos θdΩ as proportional to

I++I−, and
∫

IHdΩ and
∫

IHdΩ each as being proportional to I+−I−. In consequence, γ1+γ2 =
2γ ·(1−ĝωo), where γ is related to the proportionality coefficient and ĝ is a coefficient characterizing
the asymmetry of the scattering. If H = cos θ, then ĝ is in fact the asymmetry factor g̃ defined
by Eq. 5.17, but other forms of H yield somewhat different asymmetry factors, though these tend
to be reasonably close to g̃. For example, with the form of H given by Eq. 5.20, we showed that
ĝ = 3

2 g̃ for phase functions that are truncated to their first three Fourier components. Finally,
under circumstances when we can write G = ĝ cos θ, it follows that γ+ − γ− = −2γωoĝ. This
relation holds exactly when H = cos θ, and imposing it for other forms of H introduces errors that
are no worse than other errors that are inevitable in reducing the full scattering equation down to
two streams.

The general form of the set of two-stream coefficients satisfying all the above constraints is
then

γ1 = γ · (1− ĝωo) + γ′ · (1− ωo)
γ2 = γ · (1− ĝωo)− γ′ · (1− ωo)
γB = 2γ′ · (1− ωo)

γ+ =
1
2
ωo − γωoĝ cos ζ

γ− =
1
2
ωo + γωoĝ cos ζ

(5.30)

The coefficients γ and γ′ are purely numerical factors that depend on the assumption about the
angular distribution of radiation which is used to close the two-stream problem. All vertical depen-
dence then comes in through ωo, and possibly through ĝ if the asymmetry properties of scattering
particles vary with height. There are three common closures in use. The first is the hemispherically
isotropic closure, which we used earlier in deriving the two-stream equations without scattering.
In this closure, it is assumed that the flux is isotropic (i.e. I is constant) in each of the upward and
downward hemispheres, but with a different value in each hemisphere. The hemi-isotropic closure
is derived by using the weighting function H defined by Eq. 5.20 and making use of Eq. 5.21.
Given the isotropy of the blackbody source term, it is generally believed that the hemi-isotropic
approximation is most appropriate for thermal infrared problems, with or without scattering. An-
other widely used closure is the Eddington approximation. The Eddington closure is obtained by
taking H = cos θ and making use of Eq. 5.19. To complete the closure,

∫
I cos2 θdΩ is written in

terms of I+ + I− by assuming that the flux is truncated to the first two Fourier components, so
I = a+ b cos θ. This is probably the most widely used closure for dealing with solar radiation. It is
generally believed that this closure is a good choice for dealing with both Rayleigh scattering and
the highly forward-peaked scattering due to cloud particles, though the mathematical justification
for this belief is not very firm. The quadrature approximation is similar, except that

∫
I cos2 θdΩ is

evaluated using a technique known as Gaussian quadrature, which yields a different proportionality
constant from the Eddington closure. The defining coefficients for the three closures are given in
Table 5.3.
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γ γ′

Hemi-isotropic 1 1
Quadrature 1

2

√
3 1

2

√
3

Eddington 3
4 1

Table 5.3: Coefficients for various two-stream approximations

When ωo = 0 there is no scattering and so the upward and downward streams should become
uncoupled. From Eq. 5.30 we see that this decoupling happens only if γ = γ′, a requirement
that is satisfied for the hemi-isotropic and quadrature approximations but not for the Eddington
approximation. It follows that the Eddington approximation can incur serious errors when the
scattering is weak, though it can nonetheless outperform the other approximations when scattering
is comparable to or dominant over absorption.

5.6 Some basic solutions

When the scattering and absorption properties of the atmosphere are independent of τ∗, the two
stream equations have simple exponential solutions. We’ll begin with an elementary solution for
conservative scattering, which provide quite useful estimates of the effect of clear-sky and cloudy
atmospheres on the solar-spectrum albedo of planets. We shall specify an incoming direct-beam
flux of solar radiation, and we seek the outgoing reflected flux at the same wavenumber. For
conservative scattering, ωo = 1. In that case γ1 = γ2. Then, Eq 5.28 becomes

d

dτ∗
(I+ − I−) = L� exp(−(τ∗∞ − τ∗)/ cos ζ) (5.31)

so
I+ − I− − L� cos ζ exp(−(τ∗∞ − τ∗)/ cos ζ) = C (5.32)

where C is a constant. This equation states that, for conservative scattering, the net of the
diffuse flux and the vertical component of the surviving direct-beam flux is constant. As the
upper boundary condition we require that the diffuse incoming radiation be zero; hence C =
I+,∞ − L� cos ζ, and

I+ − I− = I+,∞ + L� cos ζ(exp(−(τ∗∞ − τ∗)/ cos ζ)− 1) (5.33)

Deep in the atmosphere, I+ − I− becomes constant, and is equal to the difference between the
top-of atmosphere incoming minus outgoing flux, i.e. I+,∞ − L� cos ζ. When the atmosphere is
optically thick, or when cos ζ is small (i.e. when the sun is close to the horizon) the exponential
term is significant only near the top of the atmosphere, It represents the conversion of the direct
beam into diffuse radiation by scattering, which occurs within a conversion layer of depth 1/ cos ζ
in optical depth units.

I+,∞ is the reflected flux we wish to determine, and we must close the problem by applying a
boundary condition at the ground. For this we need I+(τ∗), which we obtain by using the equation
for I+ + I−. Let’s restrict attention to the symmetric scattering case, g = 0, for which γ+ = γ−
and γ1 = γ2 = γ. Then

d

dτ∗
(I+ + I−) = −2γ(I+ − I−) = −2γ(I+,∞ − L� cos ζ + L� cos ζ exp(−(τ∗∞ − τ∗)/ cos ζ)) (5.34)
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The solution which satisfies I− = 0 at the top of the atmosphere, is

I+ + I− = I+,∞+2γ(I+,∞−L� cos ζ)(τ∗∞− τ∗)+2γL� cos2 ζ(1− exp(−(τ∗∞− τ∗)/ cos ζ)) (5.35)

Let’s suppose that the ground is perfectly absorbing. This calculation characterizes the albedo of
the atmosphere alone. Later, we’ll compute how much the surface albedo enhances the planetary
albedo. If the ground is perfectly absorbing, then we require I+ = 0 at τ∗ = 0. To apply the
boundary condition, we add Eqns. 5.33 and 5.35 and evaluate the result at the ground. Applying
the boundary condition and solving for I+,∞ we find

I+,∞ =
( 1
2 − γ cos ζ)β� + γτ∗∞

1 + γτ∗∞
L� cos ζ ≡ αaL� cos ζ (5.36)

where β� = 1− exp(−τ∗∞/ cos ζ); this quantity is the proportion of the direct solar beam that has
been lost to scattering by the time the beam reaches the ground. The fraction multiplying L� cos ζ
in Eq. 5.36 is the planetary albedo. Since any flux reaching the ground is absorbed completely,
this albedo is in fact the albedo of the atmosphere alone, which we will call αa. In the optically
thin limit, β� ≈ τ∗∞/ cos ζ, so the albedo approaches zero like 1

2τ∗∞/ cos ζ. Half of the small amount
of flux scattered by the atmosphere exits the top of the atmosphere, but the other half is scattered
into the ground, where it is absorbed.

As the atmosphere is made more optically thick, the albedo increases in two stages. The
first stage is an exponential adjustment, as the direct beam is converted to diffuse radiation. Some
simple algebra shows that the numerator of Eq. 5.36 always increases with τ∗, regardless of the
value of cos ζ. However, when the incident beam is relatively near the horizon, so that γ cos ζ < 1

2 ,
the conversion term leads to an exponential increase of albedo with τ∗. The effect becomes more
pronounced when the Sun is more nearly on the horizon. This effect comes from the direct scatter
of the incident beam to space. When τ∗∞ becomes appreciably larger than 1/ cos ζ, however, the
direct beam has been completely converted, β� ≈ 1, and the albedo no longer varies exponentially.
For large τ∗∞, the albedo approaches unity like 1− ( 1

2γ−1 + cos ζ)/τ∗∞. The rather slow approach
to a state of complete reflection is due to multiple scattering. In contrast to the exponential decay
of the direct beam, the diffuse radiation surviving to be absorbed at the surface decays only like
1/τ∗∞ because much of the radiation scattered upward is latter scattered back downward. The
exponential decay of the direct beam just represents a conversion to diffuse radiation,and therefore
does not materially alter the conclusion that scattering is a relatively ineffective way of preventing
radiation from reaching the surface. That is why one cannot rely on Rayleigh scattering alone
to shield life at the surface from harmful ultraviolet radiation, despite the fact that the Rayleigh
optical thickness of an Earthlike atmosphere is quite high in the ultraviolet.

The simple albedo formula given above has many physically important ramifications. Before
computing the albedo for various conservatively scattering atmospheres, though, it is necessary to
bring in the effect of asymmetric scattering if we are to deal with clouds, as scattering from cloud
particles is strongly forward-peaked. A nonzero asymmetry factor simply adds a direct beam source
term to the equation for d(I+ + I−)/dτ∗, since γ+ − γ− no longer vanishes. Some straightforward
algebra shows that, allowing for a nonzero asymmetry factor, the albedo formula becomes

αa =
( 1
2 − γ cos ζ)β� + (1− ĝ)γτ∗∞

1 + (1− ĝ)γτ∗∞
(5.37)

This differs from the symmetric scattering form only in that the optical thickness is multiplied by
1 − ĝ, which reduces the effective optical thickness when ĝ > 0. Thus, in the context of the two
stream equations, the effect of asymmetric scattering is not very surprising or subtle. Since forward
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Earth Early Mars Venus Titan Water cloud Sulfate aerosol haze
τ∗∞ 0.12 1.03 20. 1.45 3. 1.25
ĝ 0. 0 0 0 .87 .76
albedo, hemi-isotropic .08 .43 .94 .52 .13 .10
albedo, quadrature .08 .43 .94 .51 .17 .13
albedo, Eddington .08 .42 .93 .51 .20 .16

Table 5.4: Albedos for purely scattering atmospheres. Values given for Earty, Early Mars, Venus
and Titan are for hypothetical clear-sky atmospheres consisting of 1 bar of air for Earth, 2bar of
CO2 for Early Mars, 90bar of CO2 for Venus and 1.5bar of N2 for Titan. The water cloud case
assumes a path of 10 grams of water per square meter in droplets of radius 10 micrometers, having
a scattering efficiency of 2. The sulfate aerosol case assumes a path of 1

2 gram per square meter
in sulfuric acid droplets of radius 1micrometer, having a scattering efficiency of 3. Albedos are
computed at a wavelength of .5micrometer, with a zenith angle of 45o for the direct beam.

scattering just adds back into the forward radiation as if scattering had not occured at all, forward-
dominated scattering simply has the effect of reducing the optical thickness of the atmosphere. The
only reason one can’t get by with simply redefining the optical depth is the presence of the direct
beam; the direct beam transmission factor β� is computed using the unmodified optical depth,
rather than the rescaled optical depth, because even forward-scattered radiation is transferred out
of the direct beam and into the diffuse component.

In Table 5.4 we use Eq.5.37 to compute the albedos of a number of clear-sky and cloudy
planetary atmosphere, based on optical depths computed from the Rayleigh scattering or Mie-
scattering cross-sections in the visible spectrum. Results are shown for both the hemispherically
isotropic and the Eddington approximations; the results differ little between the approximations
for the symmetric Rayleigh scattering cases. In clear sky conditions, Earth’s atmosphere reflects
about 8% of the incoming solar energy back to space. This represents nearly a third of Earth’s
observed albedo, and is a significant player in the energy budget. The thick CO2 atmosphere
postulated for Early Mars has an even more significant effect on albedo, reflecting fully 43% of the
solar energy. Further increases in CO2 lead to even greater reflection, making it hard to warm Early
Mars with the gaseous CO2 greenhouse effect alone. The case of Venus is particularly interesting.
We see from the table that if the thick clouds of Venus were removed, Rayleigh scattering alone
would be sufficient to keep the albedo high. The value in the table is an overestimate of the
albedo Venus would have in the no-cloud case, since it ignores the solar absorption of CO2, but
it suffices to show that virtually all of what escapes absorption would be scattered back to space
by Rayleigh scattering. This is important to the evolution of Venus-like planets, which might not
have atmospheric chemistry that supports sulfuric acid clouds like those of Venus at present; for
that matter, it is not completely certain that thick clouds are a perennial feature of our own Venus.
When one factors in that rather little solar radiation penetrates the present thick clouds of Venus,
it is evident that the strong Rayleigh scattering of the surviving flux implies that only a trickle of
solar radiation reaches the surface of a planet. It is only a trickle, but as we have seen in Chapter
4, it is a very important trickle, since the surface could not be so hot if most of the solar energy
were absorbed aloft.

The cloud cases in Table 5.4 could really apply to any planet with condensible water or
sulfer compounds. The cloud parameters chosen are quite typical of Earth conditions. Scattering
of solar radiation from cloud particles is quite different from Rayleigh scattering because of the
strong asymmetry, which makes the albedo considerably lower than one would expect on the basis
of optical thickness. Nonetheless, a small mass of cloud water, or a still smaller mass of sulfate
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aerosol in the form of micrometer-sized droplets, leads to a very significant albedo. To put the
mass path of sulfate aerosol into perspective, we note that if we assume a 10 day lifetime for aerosol
in the atmosphere, the assumed mass path is equivalent to a world wide sulfur emission of about
8 megatonnes/da, allowing for the proportion of S in H2SO4. Actual worldwide sulfur emissions
for 1990 are estimated to have been more like 1

3 megatonne/da, which is why the albedo of Earth’s
sulfate aerosol haze is lower than the estimate in the table, though still a significant player in the
radiation budget.

Note also that when the asymmetry is as pronounced as it is for cloud particles, the albedo
predicted by the Eddington approximation is significantly greater than that for the hemispherically
isotropic case. Although the asymmetry factor reduces the attenuation of diffuse radiation by the
cloud, the decay of the direct beam is exponential in the optical depth itself, leading to near total
attenuation of the direct beam by the water cloud. This is why a thick cloud looks bright, though
you cannot easily discern the disk of the Sun. It is also why it is possible to get quite thoroughly
sunburned on a cloudy day.

In the preceding calculation we assumed that the ground was perfectly absorbing. If the
ground is instead partially reflecting, having albedo αg, it will reflect some of the light reaching
the surface back upward. Some of this light reflected from the surface will make it through the
atmosphere and escape out the top, increasing the planetary albedo. How does the albedo of the
atmosphere combine with the albedo of the ground to make up the planetary albedo? Since we are
assuming that there is no atmospheric absorption, if a proportion αa of incoming light is reflected
by the atmosphere, then a proportion (1−αa) reaches the ground. The proportion of this reflected
back upward is (1−αa)αg, and if we were to simply add this upward proportion to the part reflected
directly by the atmosphere we’d get a planetary albedo of αa + (1− αa)αg. This simple estimate
already illustrates the important result that putting a reflective (e.g. cloudy) atmosphere over an
already reflective surface changes the planetary albedo much less than putting such an atmosphere
over a dark surface – you can’t make the planet whiter than white, as it were. The simple estimate
overestimates the planetary albedo, though, since some of the upward radiation from the ground
bounces back from the atmosphere where some of the remainder is absorbed at the ground. The
less is reflected back upwards, and ever diminishing proportions remain to multiply scatter back
and forth between the atmosphere and the ground. One doesn’t need to actually sum an infinite
series to solve the problem; all we need to do is to correctly specify the boundary condition on the
upward radiation at the ground, which requires in turn a specification of the proportion of upward
radiation which is reflected back to the surface by the atmosphere. The upward radiation reflected
from the ground is, by definition, purely diffuse, so as a preliminary to this calculation we need
the albedo of the atmosphere for upward-directed diffuse radiation. Since the radiation is purely
diffuse, the form of this atmospheric albedo is somehwat simpler than the formula for incoming
solar radiation. It is derived in Problem ?? , and is

α′a =
(1− ĝ)γτ∗∞

1 + (1− ĝ)γτ∗∞
(5.38)

Note that this has the same form as the expression for αa, except that the direct beam term in
the numerator, proportional to β�, has been dropped. In terms of α′a, the boundary condition on
upward radiation at the ground is

I+(0) = αgI−(0) = αg · ((1− αa)L� cos ζ + α′aI+(0)) (5.39)

which can be solved for I+(0). When this boundary condition is applied to the conservative two-
stream equations, the resulting expression for I+,∞ yields the following expression for the planetary
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albedo:

α = αa +
(1− α′a)(1− αa)

1− αgα′a
αg

= 1− (1− αg)(1− αa)
(1− αg)α′a + (1− α′a)

(5.40)

The details are carried out in Problem ??. When all three albedos, αa, α′a and αg are small, the
expression reduces to the sum of the albedos αa + αg. Eq. 5.40 has very important consequences
for the net effect of clouds on the planetary radiation budget. Clouds have both a warming and a
cooling effect on climate. High-altitude clouds have a warming effect, since they strongly reduce
OLR either by absorption and emission, or by scattering, of infrared radiation. Clouds at any
altitude have a cooling influence, through increasing the planetary albedo in the solar spectrum.
The net effect of clouds depends on how the competition between these two factors plays out. Eq.
5.40 shows that clouds increase the planetary albedo rather little, if they are put over a highly
reflective surface (such as ice), or if they are put into an atmosphere which is already quite reflective
(such as the dense atmosphere of Early Mars). In either case, introduction of clouds will tend to
have a strong net warming effect, because the cloud greenhouse effect is relatively uncompensated
by the cloud albedo effect. It is for this reason that clouds can greatly facilitate the deglaciation of
a Snowball Earth, and that clouds of either water or CO2 can very significantly warm Early Mars.

Now let’s do an infrared scattering problem, one that illustrates the scattering greenhouse
effect in its simplest form. Consider an atmosphere made of a gas that is completely transparent
(hence also non-emitting) in the infrared. Suspended in the atmosphere is a cloud made of a
substance such as CO2 ice or liquid methane that is almost non-absorbing in the infrared; we’ll
idealize it as being exactly non-absorbing, and assume the scattering to be symmetric. Since neither
the gas nor the cloud emit infrared, the temperature profile of the atmosphere is immaterial. This
atmosphere lies above a blackbody surface with temperature T . What is the OLR? This problem
is also a case of conservative scattering (ωo = 1), but with different boundary conditions. Since
there is no incoming infrared, the upper boundary condition is I− = 0. At the ground, the upward
flux boundary condition is I+ = πB(ν, T ). Without any direct beam or blackbody source term,
I+ − I− is a constant, which is equal to the outgoing radiation I+,∞. at the frequency under
consideration. The equation for d(I+ + I−)/dτ∗ then tells us that I+ + I− = 2πB− (1+γτ∗)I+,∞.
Finally, imposing the boundary condition that I− = 0 at τ∗ = τ∗∞, we conclude that

I+,∞ = πB/(2 + γτ∗∞) (5.41)

Hence, the infrared scattering reduces the outgoing infrared by a factor 1/(2 + γτ∗∞) relative to
what it would be in the absence of an atmosphere. This increases the surface temperature of the
planet in the same fashion as the OLR reduction from the more conventional absorption/emission
greenhouse effect. However, the scattering greenhouse effect works quite differently, since it reduces
the OLR regardless of whether the atmospheric temperature goes down with height.

Next we’ll extend the preceding scattering greenhouse problem to allow ωo < 1, so the
atmosphere can absorb and emit. We’ll assume the atmosphere to be isothermal at the same
temperature T as the ground. In this case, I+ = I− = πB(ν, T ) is a particular solution satisfying
the boundary condition on I+ at the ground, though it does not satisfy the boundary condition
I− = 0 at the top of the atmosphere. We must add a homogenous solution to the particular
solution, which cancels I− at the top of the atmosphere for the particular solution, but leaves the
bottom boundary condition intact. The homogeneous equation is obtained by taking the derivative
of Eq. 5.28 and substituting the derivative of I+ + I− using Eq. 5.29, dropping the source terms
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from both. Assuming ωo and g to be independent of height, the homogeneous equation is then

d2

dτ∗2
(I+ − I−) = −(γ1 − γ2)(γ1 + γ2)(I+ − I−)

= −4γγ′(1− ĝωo)(1− ωo)(I+ − I−)
(5.42)

The general solution to this is a exp(−K · (τ∗∞ − τ∗)) + b exp(K · (τ∗∞ − τ∗)), where

K = 2
√

γγ′(1− ĝωo)(1− ωo) (5.43)

One term grows exponentially in optical depth, while the other decays exponentially. The solution
for I+ + I− is then obtained from the solution for I+ − I− using Eq. 5.28, allowing us to obtain
the two fluxes individually for use in applying the boundary conditions. First, the homogeneous
solution we add in must not disturb I+ at the ground, since the particular solution already satisfies
the boundary condition there. To keep the algebra simple, let’s assume τ∗∞ � 1. In that case, we
approximately satisfy the boundary condition at the ground by taking the solution which decays
toward the ground, i.e. b = 0. The boundary condition on I−(0) then determines the value of the
coefficient a. Carrying out the algebra and adding the homogeneous to the particular solution, we
find the outgoing radiation to be

I+,∞ = 2
γ′(1− ωo)

γ′(1− ωo) +
√

γγ′(1− ĝωo)(1− ωo)
πB (5.44)

In this equation, πB is the emission the planet would have in the absence of an atmosphere, and
the the coefficient multiplying it gives the reduction in emission due to the atmosphere. Note
that for a non-scattering atmosphere, the isothermal atmosphere assumed would have no effect
whatever on the outgoing radiation. In contrast to the conservative scattering case described by
Eq 5.41, the emission in the partially absorbing case does not approach zero in the optically thick
limit, but rather approaches the nonzero value given by Eq. 5.44. When there is no scattering, i.e.
ωo = 0, the atmosphere should have no effect on emission, and this limit shows the shortcomings
of the Eddington approximation. For ωo = 0, the factor reducing the emission is 2γ′/(γ′ +

√
γγ′),

which reduces to unity only when γ = γ′. Both the quadrature and the hemispherically isotropic
assumptions satisfy this requirement, but as we have seen before, the Eddington approximation
gives the wrong answer when scattering is weak, and is not suitable for such cases. For any of the
approximations, as the scattering is made stronger relative to absorption, ωo → 1 and the emission
goes to zero in proportion to

√
(γ/γ′)(1− ωo)/(1− ĝ).

Finally, we’ll use an elementary solution to show how scattering affects the vertical distribu-
tion of solar absorption. We’ll suppose that thermal emission is negligible at the frequency under
consideration, as is the case for solar radiation on planets at Earthlike (or even Venus-llke) tem-
peratures. The basic idea is that scattering increases the net path traveled by radiation in going
from one altitude to another, because the radiation bounces back and forth many times rather
than proceeding in a straight line. This allows more radiation to be absorbed within a thinner
layer, as compared to the no-scattering case. At the same time, however, scattering reflects some
radiation back to space before it has any opportunity to be absorbed at all. As will be shown in
the forthcoming derivation, the net result is to reduce the solar absorption while at the same time
concentrating it more in the upper atmosphere, as compared to a no-scattering case with the same
distribution of absorbers.

The full problem with arbitrary surface albedo, optical depth, and asymmetry factor is
analytically tractable so long as ωo is constant. The full solution is somewhat unwieldy, however,
so we’ll now make a few simplifying assumptions; the general problem is explored in Problem ??.



276 CHAPTER 5. SCATTERING

To keep the algebra simple, in the present discussion we’ll assume τ∗∞ to be very large, so that the
lower boundary does not affect the solution. The atmosphere is effectively semi-infinite (a top but
no bottom) in this solution. We’ll also assume that the asymmetry factor vanishes. The solution
begins with taking the derivative of Eq 5.29 and substituting from Eq. 5.28, which gives us

d2

dτ∗2
(I+ + I−) = −K2(I+ + I−)− 2γωoL� exp(−(τ∗∞ − τ∗)/ cos ζ)) (5.45)

where K is defined by Eq. 5.43 with ĝ set to zero. A particular solution to this equation is

I+ + I− = −2γωoL� cos2 ζ

1−K2 cos2 ζ
(5.46)

to which we have to add superpositions of the two homogeneous solutions exp(±K(τ∗∞ − τ∗)) so
as to satisfy the boundary conditions at the top and bottom of the atmosphere. So far the only as-
sumptions we have used are that ωo is constant, the thermal emission is neglected, and ĝ = 0. Since
the atmosphere is semi-infinite, the only admissible homogeneous solution is a exp(−K(τ∗∞ − τ∗)),
since the other solution blows up deep in the atmosphere. It remains only to determine a, which is
done by applying the condition I− = 0 at the top of the atmosphere. To do this we need I+ − I−.
This is obtained from Eq 5.29, which takes on a particularly simple form when ĝ = 0. Using the
value of a thus obtained, the net vertical diffuse flux is found to be

I+ − I− = [− K

2γ + K

1 + 2γ cos ζ

1−K2 cos2 ζ
exp(−K(τ∗∞ − τ∗))

+
1

1−K2 cos2 ζ
exp(−(τ∗∞ − τ∗)/ cos ζ)]ωoL� cos ζ

(5.47)

Since I− = 0 at the top of the atmosphere, the albedo is obtained by evaluating this expression at
τ∗ = τ∗∞ and taking the coefficient of the incoming flux L� cos ζ. Thus,

α =
2γωo

(1 + K cos ζ)(2γ + K)

=
2γωo

(1 + 2
√

γγ′(1− ωo) cos ζ)(2γ + 2
√

γγ′(1− ωo))

(5.48)

In the absence of scattering, all the incident flux should be absorbed no matter how low the
concentration of absorbers, since the atmosphere is assumed infinitely deep. Consistently with
this reasoning the above albedo approaches zero as ωo → 0. For small ωo, the albedo increases
linearly with ωo. It continues to increase monotonically as ωo is further increased. In the limit
ωo → 1 where scattering becomes very strong, α → 1 and the atmosphere becomes perfectly
reflecting; radiation is scattered back to space before it has much opportunity to be absorbed in
the atmosphere.

Though strong scattering reduces the opportunity for absorption, it also reduces the depth
scale over which the small amount of absorbed radiation is deposited in the atmosphere. The
reason is that scattering increases absorption through multiple reflections that increase the path
length. To get a better handle on what is going on, we need to examine the vertical profile of
the flux as ωo → 1 while holding the concentration of absorbers fixed. Taking the limit this way
would correspond, for example, to looking at ultraviolet absorption as we increase the amount of
conservatively scattering cloud particles in an atmosphere while keeping the amount of ultraviolet-
absorbing ozone fixed. This is equivalent to writing τ∗∞−τ∗ = (κ/(1−omegao))(p/g), if we neglect
pressure broadening, since (1 − ωo)∆τ gives the absorption in a layer of thickness ∆τ . It follows
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from this expression for optical thickness that all the direct beam flux is converted to diffuse flux
in a very thin conversion layer if ωo → 1. Below the conversion layer all flux is diffuse, and the net
vertical flux is then

I+ − I− = − K

2γ + K

1 + 2γ cos ζ

1−K2 cos ζ
exp(−K

1
1− ωo

κp

g
)ωoL� cos ζ

≈
√

γ

γ′
(1− 2γ cos ζ)

√
1− ωo exp(−2

√
γγ′

1√
1− ωo

κp

g
)L� cos ζ

(5.49)

Hence the flux which manages to penetrate into the atmosphere is absorbed over a layer depth
which scales with

√
1− ωo, and approaches zero as ωo → 1. It follows also from Eq. 5.49 that the

heating rate d(I+ − I−)/dp remains order unity in this limit, though it becomes concentrated in a
thinner and thinner layer near the top of the atmosphere.

5.7 Numerical solution of the two-stream equations

Eq. 5.27 is a coupled, linear system of ordinary differential equations requiring two boundary
conditions. It takes the form of a two-point boundary value problem, because one specifies a
boundary condition on I+ at τ∗ = 0 and on I− (generally that it vanish) at τ∗ = τ∞. The
solutions can in principle be constructed from solutions of a set of initial value problems: first
one integrates the full inhomogeneous system downward from the top, specifying I− at the top,
and obtains a particular solution. This doesn’t satisfy the bottom boundary condition on I+, so
one then computes a solution to the homogeneous (unforced) equation also integrating top-down
subject to the condition on I− at the top. Then one simply superposes the right amplitude of
the homogeneous solution to satisfy the boundary condition at the ground. A similar procedure
can be carried out integrating from the ground upward instead. Either approach can be carried
out very simply and with high accuracy, using any standard algorithm for integrating ordinary
differential equations. Unfortunately, the numerical solution breaks down when the atmosphere
becomes very optically thick. The reason is that the homogeneous equation we are solving has
exponentially growing solutions in both directions. When the atmosphere is optically thick, these
grow by many orders of magnitude, and come to dominate both the particular and homogeneous
solutions, so round-off error wrecks our ability to satisfy the boundary condition. With 64 bits
of precision, the above solution method tends to break down at optical depths of 40 or more. A
related problem in the optically thick limit is that of ”stiffness.” When the atmosphere is very
optically thick, one is forced to use a great number of points to represent the atmosphere so as
to avoid numerical instability, even if the solution one is seeking varies only moderately over the
depth of the atmosphere.

5.8 Water and ice clouds

Now we’ll take a closer look at the way Earth’s water and water-ice clouds effect the radiation
budget, taking account of the balance between the shortwave albedo effect of clouds which act to
cool the planet and the longwave cloud greenhouse effects which act to warm the planet. Much of
the general behavior in evidence on Earth applies equally well to water clouds on other planets,
or for that matter to any cloud-forming substance which is strongly absorbing in the infrared but
fairly transparent in the solar spectrum.
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To set the stage, we’ll first discuss some calculations with the ccm radiation code which
show how high clouds affect the albedo and OLR under typical tropical conditions. The results
are shown in Fig. 5.8. These calculations include most of the radiative effects operating in the
real Tropics, including solar and infrared absorption by water vapor and CO2, though we have left
ozone out of the picture. The surface albedo has been set to zero, so as to focus on the reflective
effect of the cloudy atmosphere itself. In this calculation, the tropospheric temperature profile
is on the moist adiabat, and we place a geometrically thin cloud with specified water content in
the upper troposphere, where the pressure is 283 mb and the temperature Tc of the cloud is 243
K. At these temperatures, the cloud is primarily composed of ice, and the ccm radiation model
makes use of the complex index of refraction appropriate to water-ice particles. Results are given
as a function of the condensed water path of the cloud. As long as the cloud is geometrically thin
enough to be essentially isothermal, the actual geometrical thickness of the cloud is irrelevant to
this calculation.

For 30 micrometer particles, which are typical of actual tropical ice clouds, it only takes a
path of 50 g/m2 to make the cloud act like a blackbody. The OLR is about 20 W/m2 below the
blackbody emission σT 4

c of the cloud itself, because there is some water vapor and CO2 greenhouse
effect in the colder air above the cloud. This effect would disappear if the cloud were placed at
the minimum temperature part of the atmosphere, and would increase if the cloud were lower. In
essence, a cloud that is optically thick in the infrared acts like a new ”ground”, radiating upward
into the upper part of the atmosphere with a blackbody temperature Tc. If the particles are made
smaller, it takes less cloud water in order to make the cloud optically thick, because the same
mass of water yields more aggregate cross-section area of cloud particles. As a practical matter,
most high clouds occuring in the vicinity of deep convection in the Tropics can be considered
optically thick in the infrared. The associated cloud greenhouse effect is enormous, and would lead
to an uninhabitably hot planet if not compensated by shortwave albedo effects that are of similar
magnitude.

The albedo effect of the cloud also increases monotonically with cloud water content, but
at a much slower rate than the greenhouse effect, for the reasons discussed in Section 5.6. For
30 micrometer particles, the planetary albedo has only reached .2 when the cloud water path is
50g/m2. The albedo doesn’t reach .5 until the cloud water content approaches 200 g/m2. On
the other hand, the failure of cloud albedo to saturate until large cloud water paths means that
the particle size can have a very important influence on albedo; reducing the particle size to 10
micrometers increases the albedo to .7 for a cloud containing 200 g/m2 of ice. As for compensation
between shortwave and longwave cloud effects, taking a cloud with 30 micrometer particles and
100 g/m2, the albedo is about .4, which yields 170 W/m2 reduction in solar absorption based
on typical annual average tropical insolation. This compares with a cloud greenhouse effect of
120W/m2, so such clouds have a moderate net cooling effect. If the cloud only had a water content
of 50 g/m2, though, the cloud greenhouse effect would be nearly the same but the cloud albedo
effect is reduced by nearly half, and the cloud would have a net warming effect. Similarly, if
the ground were partially reflecting (owing to vegetation cover or low-lying clouds), the change
in albedo due to high clouds would be reduced, shifting the balance again in favor of net cloud
warming. On the other hand, reducing the particle size of the clouds makes them much brighter,
making it easier for the clouds to have a net cooling effect.

For fixed particle size, the cloud altitude has relatively little effect on albedo for a given
cloud condensed water path. Low altitude liquid water clouds tend to have smaller particles than
ice clouds as well as larger water content (because there is more water around to condense), and
are correspondingly more reflective. Because of this effect, the balance of power for mid-level and
low-level clouds shifts decidedly toward a net cooling effect on the planet.
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Figure 5.8: Albedo and OLR as a function of cloud condensed water path, for a high ice cloud
with temperature Tc = 242K at a pressure pc = 283mb. The temperature profile is on the
moist adiabat corresponding to a surface temperature of 300K, patched to an isothermal 180K
stratosphere. The relative humidity is 50% and the CO2 concentration is 300ppmv, but there is
no ozone in the atmosphere. Calculations were done with the ccm radiation code, and results are
shown for both 30 micrometer and 10 micrometer particles.

High clouds have both a warming and a cooling effect, and which one wins depends on
the detailed of the cloud properties, including cloud temperature, particle size, and condensed
water content. Colder cloud temperatures tend to favor net warming. Making particles smaller or
increasing cloud water enhances the cooling effect except for very thin clouds, since it takes little
cloud water to make the cloud act like a blackbody whereas the albedo continues to increase with
cloud water increase or particle size decrease, for the reasons discussed in Section 5.6. The balance
between albedo effect and greenhouse effect also depends on the intensity of solar radiation, since
albedo matters not at all if there is no sunlight. In the polar night, clouds have an unambiguous
warming effect as long as they are not right at the surface. Similarly, the cloud albedo effect
depends on the albedo of the underlying surface; clouds over a reflective surface like ice (or surface
clouds!) will tend to have a warming effect, as also discussed in Section ??. As the cloud is made
lower, the cloud greenhouse effect is attenuated, because the cloud temperature is closer to the
ground temperature and also because (especially in moist regions) the greenhouse effect of the
clear air above the clouds masks the longwave radiative effect of the cloud itself.

Although the large and competing effects of clouds on OLR and albedo pose similar chal-
lenges on any planet whose atmosphere contains a condensible substance, Earth is the only case
at present for which we have good observations of the net radiative effect of clouds. The first
satellite mission to do this accurately was the Earth Radiation Budget Experiment (ERBE), and
subsequent missions have taken a similar approach. We discussed some ERBE clear-sky results
in Chapter ??, and now we will see what ERBE has to tell us about cloud effects. The ERBE
mission measured the Earth’s radiation budget using two sets of highly accurate broadband ra-
diometers borne on satellites – one in the infrared spectrum and one in the shortwave (i.e. solar)
spectrum. Moreover, the processing algorithm made use of the patchiness of Earth’s cloud cover
in order to estimate the effect of clouds on the longwave and shortwave radiation. Within each
scene examined (think of a scene as a 50km square patch of the Earth’s surface) the algorithm
identified those pixels which represented cloud-free clear-sky conditions, and defined ”clear sky”
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longwave and shortwave flux as the value the flux over the scene would have if the flux of all pixels
in the scene were replaced by the average of the clear-sky pixels. In the longwave, for example, the
ERBE retrieval reports the all-sky OLR, called OLRall and the clear-sky OLR, called OLRclear.
The cloud longwave forcing is then defined as OLRclear − OLRall. Since clouds reduce the OLR
by making the upper troposphere more optically thick, the cloud longwave forcing is positive, and
represents a warming effect. Similarly, the cloud shortwave forcing is defined as Sabs,all−Sabs,clear,
where Sabs is the top-of-atmosphere absorbed solar radiation – the difference between incoming and
reflected solar radiation. Clouds reduce the solar absorption by increasing the albedo, and so the
cloud shortwave forcing thus defined is generally negative, representing a cooling effect. The sum
of the cloud longwave and cloud shortwave forcings is the net cloud forcing, with positive values
representing a warming tendency and negative values representing a cooling tendency. Clear sky
and all-sky albedo can be defined similarly.

Results for clear and cloudy albedo, and for the cloud radiative forcing are shown for the year
1988 in Figure 5.9. Other years show a similar pattern. The ERBE dataset contains information
of this sort for each month, reported on a latitude-longitude grid. Here we show only annual-mean
results averaged along latitude circles. The full monthly-mean dataset for all available years is
provided as part of the dataset collection in the supplementary materials for this book. Turning
attention first to the clear-sky albedo, we see that without clouds the albedo varies in a narrow
range of .11 to .16 from 60S latitude to 42N. Poleward of 60S, the albedo increases sharply owing
to the high albedo Antarctic ice. Still, the values indicate that the albedo of the partially snow-
covered Antarctic ice must exceed .7, since the atmospheric absorption makes the planetary albedo
lower than the surface albedo. The clear-sky estimates near the pole are somewhat unreliable, since
it is hard to distinguish between low clouds and ice. Going towards the North pole from 42N the
albedo increases somewhat more gently, owing to the patchy distribution of sea ice and its seasonal
fluctuations; the rest of the Northern high-latitude albedo increase is due to winter snow-cover
over land. Clouds have a strong reflective effect, approximately doubling the tropical albedo and
increasing the midlatitude albedo to .4 or more. The area-weighted mean albedo is .19 for clear
sky and .33 including cloud effects. Area-weighting doesn’t take into account the seasonal and
latitudinal distribution of sunlight though; a more appropriate mean albedo is based on taking the
ratio of global net reflected solar radiation to the incident radiation. This estimate yields somewhat
smaller values: a mean clear-sky albedo of .16 and a mean all-sky albedo of .30.

If uncompensated by the cloud greenhouse effect, the high albedo of clouds would probably
be sufficient to throw the Earth into a Snowball state. In reality, the reduction of OLR by clouds
cancels most of the cloud cooling effect, as shown in the right hand panel of Figure 5.9. The cloud
longwave forcing – i.e. the reduction in OLR due to clouds – is anti-correlated with the cloud
shortwave forcing, and has sufficient magnitude to cancel most of the cloud shortwave forcing. The
distribution of cloud forcing takes us into some consideration of aspects of the general circulation
we have not introduced previously. Somewhat North of the Equator there is a region of deep
convection yielding deep, thick clouds, which is manifest in the Figure as a peak in both the cloud
longwave and shortwave forcing (marked ”ITCZ” in the figure for Inter-Tropical Convergence Zone,
in honor of the winds which converge moisture into this region and feed the convection). The ITCZ
is flanked by two subtropical regions where convection is suppressed by downward motions in the
atmosphere, and is shallow or absent. Here one encounters local minima in both the cloud longwave
and shortwave forcing. Throughout the tropics, the two terms sum to a net cooling effect of about
−20W/m2, which is stronger in the subtropics than near the ITCZ. The subtropical cloud cooling
is in part due to near-surface clouds which are associated with the boundary layer rather than
deep convection. In the midlatitudes, there is another region of deep cloud activity. This one
is associated with the large scale organized storm tracks, which loft water from the subtropical
ocean and move it poleward and upward. The albedo effect of clouds more strongly dominates
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Figure 5.9: Zonally averaged annual mean clear and cloudy sky albedo(left panel) and cloud
radiative forcing (right panel) measured by ERBE for the year 1988.

the greenhouse effect in this region, and even more so towards the Antarctic region, where there is
strong cloud shortwave forcing associated with low-lying marine stratus clouds. As a result there
is strong net cooling in the midlatitude and polar regions.

The area-weighted global mean cloud longwave forcing is 28W/m2, while the mean cloud
shortwave forcing is −47W/m2, which nets out to a cooling influence of −19W/m2. Using a
sensitivity factof of 2.2W/m2K from Section ??, we conclude that the Earth would be about 8.6K
warmer if there were no clouds.

In circumstances under which the clear-sky regions do not absorb much solar radiation,
high clouds have a potent net warming effect, though there must be enough convection around
to loft water to sufficiently high altitudes to make a high optically thick cloud. As we have
already mentioned, clouds can contribute significantly to deglaciation of the high-albedo Snowball
Earth, though the main question there is whether it is possible to make sufficiently high clouds
with sufficiently great water content in an atmosphere with low water content (because of low
temperature) and sluggish convection (because of low solar absorption). Another situation in
which the clear-sky solar absorption is low is the high-latitude winter. Here, there is little solar
radiation to reflect from clouds simply because it is night or twilight most of the time, and so
if there are high clouds they will have a pronounced winter warming effect, and perhaps even
inhibit the formation of sea ice in open water conditions. This effect may play a role in the Arctic
during the Cretaceous hothouse climate, since there is open water in the Arctic Ocean which can
maintain a supply of relatively warm water throughout the winter to feed deep convection. It
seems plausible that this mechanism would help explain the mysterious low-gradient climate of
Cretaceous and similar hothouse climates, described in Section ??. General circulation models to
date do not support a sufficiently strong cloud effect for clouds to be the answer to the Cretaceous
puzzle, but there is much remaining to be learned about clouds, so the last word has not by any
means been uttered on this topic. This potential mechanism is only viable when there is open
water in the polar ocean. Over a polar continent, such as Antarctica, the ground would cool off
rapidly in the Winter, foreclosing any serious possibility of deep convection and the associated
deep clouds.

The effect of clouds on the water-vapor runaway greenhouse represents one of the most vexing



282 CHAPTER 5. SCATTERING

and important unresolved issues in planetary climate. The observed behavior of Earth clouds can
provide little guidance as to cloud effects in a much warmer atmosphere in which water vapor is the
dominant component. It seems plausible at this point that water clouds would inhibit the runaway
greenhouse at least for Early Venus conditions, but a definitive answer must await attainment of a
far better understanding of cloud microphysics and cloud fraction under near-runaway conditions.

5.9 Things that go bump in the night: Infrared-scattering
with gaseous absorption

5.10 Effects of atmospheric solar absorption

5.11 For Further Reading



Chapter 6

The Surface Energy Balance

6.1 Formulation of the surface flux problem

This results of this chapter are pertinent to a planet with a distinct surface, which may defined as an
interface across which the density increases substantially and discontinously. The typical interface
would be between a gaseous atmosphere and a solid or liquid surface. In the Solar system, there
are only three examples of bodies having both a distinct surface and a thick enough atmosphere to
significantly affect the surface temperature. These are Venus, Earth, Titan and Mars; among these,
the present Martian atmosphere is so thin that it only marginally affects the surface temperature,
though this situation was probably different early in the planet’s history when the atmosphere
may have been thicker. Although thin atmospheres have little effect on the surface temperature,
the atmosphere itself can still have interesting behavior, and the flux of energy from the surface
to the atmosphere provides a crucial part of the forcing which drives the atmospheric circulation.
This is the case for example, for the thin Nitrogen atmosphere of Neptune’s moon Triton. Apart
from the examples we know, it is worth thinking of the surface balance in general terms, because
of the light it sheds on the possible nature of the climates of extrasolar planets already detected
or awaiting discovery.

The exchange of energy between the surface and the overlying atmosphere determines the
surface temperature relative to the air temperature It also turns out that it determines the exchange
of mass between the surface and the atmosphere (as in sublimation from a glacier or evaporation
from an ocean, lake or swamp). Because outer space is essentially a vacuum, the only energy
exchange terms at the top of the atmosphere are radiative. At the surface, energy can be exchanged
by means of fluid motions as well as by radiation.

The atmospheric gas in direct contact with the surface must have the same velocity as the
surface; because the surface material is so much denser (and in the case of a solid so much more
rigid) than the atmosphere, the atmospheric flow must typically adjust to the presence of the
surface over a rather short distance. The resulting strong shears lead to random-seeming complex
turbulent motions sustained by the kinetic energy of the shear flow near the boundary. We may
subdivide the atmosphere into the free atmosphere – which is sufficiently far above the surface to
be little affected by turbulence stirred up at the surface, and the planetary boundary layer (PBL,
for short) where the transfer of heat, chemical substances, and momentum is strongly affected by
surface-driven turbulence. We may further identify the surface layer, which is the thin portion of
the PBL near the ground within which all the vertical fluxes may be considered independent of
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height.

Given that the whole troposphere is created by convection – which is a form of buoyancy-
driven turbulence – it is not at once clear why the PBL should exist as a distinct entity from the
troposphere in general. The main reason one can typically distinguish the PBL is that mechanically
driven turbulence is more trapped near the surface than is buoyancy driven turbulence, and also
has distinct time and space scales. On the present Earth, the effect of moisture is also important
in maintaining the distinction, since moisture gives deep convection an intermittent character:
most of the troposphere-forming mixing takes place in rare convective events, while most of the
troposphere remains quiescent most of the time. Because dry (i.e. noncondensing) convection is
typically shallower than moist convection, in planets which have both forms the dry convection
can often be treated as part of the boundary layer. This is the case for Earth, and likely for other
planets with a surface and an atmosphere in which latent heat release is important (Titan and
perhaps Early Mars being the only other known examples so far). For planets like Present Mars
or Venus, where dry convection is the only form of convection, it is less clear that the PBL can be
productively distinguished from the troposphere in general. Even in such cases, though, one can
identify a constant-flux surface layer.

As in previous chapters, we let Tg be the temperature of the planet’s surface. Previously,
we used Tsa to denote the temperature of the air in immediate contact with the ground, but now
we modify the definition somewhat, and allow Tsa to be the temperature at the top of the surface
layer, assuming the air at the bottom of the surface layer (which is in contact with the ground)
has the same temperature as the ground itself. A model of the PBL is necessary to connect Tsa to
the temperature of the lowest part of the free troposphere. For many purposes, we can dispense
with the PBL and patch the surface layer directly to the free troposphere. We shall adhere to this
expedient in most of the following discussion.

Now let’s discuss, in general terms, how the surface budget affects the climate. The state
of the atmosphere and the ground must adjust so that the top-of-atmosphere and surface budgets
are simultaneously satisfied. If the atmosphere is optically thick in the longwave spectrum, the
top-of-atmosphere budget becomes decoupled from the surface budget, since radiation from the
ground and lower portions of the atmosphere is absorbed before it escapes to space. In this case,
the determination of Tg can be decomposed into two stages carried out in sequence. First one
determines Tsa by adjusting this temperature until the top of atmosphere balance is satisfied,
assuming that the rest of the troposphere is related to Tsa through the appropriate dry or moist
adiabat. Then, once Tsa is known, one makes use of a model of the surface flux terms to determine
the value of Tg which balances the surface budget with Tsa fixed at the previously determined
value. This can be done without reference to the top-of-atmosphere budget, since the OLR is
independent of Tg in the optically thick limit.

If the atmosphere is very optically thin in the longwave spectrum, the OLR is determined
entirely by the ground temperature and ground emissivity. Further, since an optically thin atmo-
sphere radiates very little, the only way the atmosphere itself loses energy is through turbulent
exchange with the surface. Suppose first that the atmosphere is transparent to solar radiation. In
that case, in equilibrium the net turbulent exchange between atmosphere and surface must vanish,
since otherwise the atmospheric temperature would rise or fall, there being nothing to balance
a net exchange. In consequence, the ground temperature will be just what it would have been
without an atmosphere despite the presence of turbulence. In this case, one determines the ground
temperature as if the planet were in a vacuum, the top of atmosphere budget is automatically
satisfied, and then, once Tg is known, the surface budget is used to determine Tsa, and (via an
adiabat) the rest of the atmospheric structure. It is exactly the inverse of the process used in
the optically thick case. In fact, the basic picture is little altered even if the atmosphere absorbs
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solar radiation. In that case, the requirement that the atmosphere be in equilibrium implies that
any solar radiation absorbed in the atmosphere be passed on to the surface by turbulent fluxes.
The result is much the same as if the solar radiation were absorbed directly by the surface; one
does the ground temperature calculation as before, but simply remembers to add the atmospheric
absorption to the solar energy directly absorbed by the ground. It should be kept in mind that
these considerations apply only in equilibrium. Even an optically thin atmosphere can affect the
transient behavior of the surface (e.g. in the diurnal or seasonal cycle), as will be discussed in
Chapter 8.

In the intermediate case, where the atmosphere is neither optically thick nor thin, one must
solve for Tsa and Tg simultaneously, so as to find the values that satisfy both the top-of-atmosphere
and surface energy budgets. We’ll do this crudely in the present chapter through the indroduction
of atmospheric transparency factors, and with more elaboration in Chapter 7 where we discuss full
radiative-convective models. Generally speaking, though, when the atmosphere is not too optically
thin, the surface budget will affect the temperature of the ground. For Earth this temperature is
of interest because the ground is where people live and where much of the biosphere resides as well;
for a broad range of planets actual or hypothetical the ground temperature also affects chemical
processes which determine atmospheric composition, as well as the melting of ices at the surface.
We shall see, however, that it is a fairly common circumstance that the surface fluxes effectively
constrain the ground temperature to be nearly equal to the overlying air temperature, so that the
climate can be determined without detailed reference to how the surface balance works out.

6.2 Radiative exchange

6.2.1 Shortwave radiation

The surface receives radiant energy in the form of shortwave (solar) and longwave (thermal infrared)
flux. The shortwave flux incident on the surface is equal to the shortwave flux incident at the top
of the atmosphere, diminished by whatever proportion is absorbed in the atmosphere or scattered
back to space. We will call the shortwave flux incident on the ground Sg. The shortwave flux
absorbed at the surface is then (1−αg)Sg, where αg is the albedo of the ground. Sg is affected by
clouds, atmospheric absorption and atmospheric Rayleigh scattering.

6.2.2 The behavior of the longwave back-radiation

The longwave radiation striking the surface is the infrared back radiation emitted by the atmo-
sphere, which was discussed in Chapter 4. The back radiation depends on both the greenhouse
gas content of the atmosphere – which determines its emissivity – and the temperature profile.
When the atmosphere is optically thick in the infrared, most of the back radiation comes from the
portions of the atmosphere near the ground, whereas in an optically thinner atmosphere the back
radiation comes from higher – and generally colder – parts of the atmosphere, and is correspond-
ingly weaker. If the atmosphere is very optically thin, the back radiation will be weak regardless
of the atmospheric temperature profile, simply because an optically thin atmosphere radiates very
little. As in Chapter 4, I−,s will denote the back radiation integrated over all longwave frequencies.
The absorbed infrared flux is then egI−,s, where eg is the longwave emissivity of the ground. The
ground loses energy by upward radiation at a rate egσT 4

g . Thus, the net infrared cooling of the
ground is

Fg,ir = eg · (σT 4
g − I−,s) (6.1)
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Figure 6.1: Surface cooling factor e∗ for a 1bar Nitrogen-Oxygen atmosphere with water vapor and
CO2. The surface gravity is that for Earth. In the left panel, the calculations were done with free
tropospheric relative humidity set to 50%, and low-level relative humidity set to 80%. Results in
the right panel are for a dry atmosphere (zero relative humidity, but with the temperature profile
kept the same as in the moist case). In both cases, the numbers on the curves indicate the partial
pressure of CO2 in mb.

According to Eq. 4.21, I−,s approaches σT 4
sa when the atmosphere is optically thick throughout

the infrared. In order to characterize the optical thickness of the atmosphere, we introduce the
effective low level atmospheric emissivity ea, defined so that I−,s = eaσT 4

sa. ea depends on the
temperature profile as well as the optical thickness, as illustrated by Eq. 4.21 in the optically thick
limit. When Tg = Tsa the surface cooling becomes eg · (1− ea)σT 4

g , which vanishes in the optically
thick limit where ea → 1. Let e∗ = (1− ea); this is the effective emissivity of the ground when the
air temperature equals the ground temperature. If the air temperature is not too different from
the ground temperature, we may linearize the term σT 4

g about Tg = Tsa, which results in

Fg,ir = eg · e∗σT 4
sa + (4σT 3

g eg)(Tg − Tsa) (6.2)

From this equation we can define the infrared coupling coefficient, bir = 4σT 3
g eg. When bir is

large, a small temperature difference leads to a large radiative imbalance, and it is correspondingly
hard for the ground temperature to differ much from the overlying air temperature. Later, we will
derive analogous coupling coefficients for the turbulent transfers.

Figure 6.1 shows how e∗ varies with temperature for an Earthlike atmosphere in which the
only greenhouse gases are water vapor and CO2, with the water vapor relative humidity held
fixed as temperature is changed. In the moist case (left panel), e∗ rapidly approaches zero as the
temperature increases; this is because of the increasing optical thickness caused by the increase of
water vapor content with temperature (owing to the fixed relative humidity). Increasing the CO2

content also increases the optical thickness, correspondingly reducing e∗. At low temperatures,
the CO2 effect dominates, because there is little water in the atmosphere. However, by the time
Earthlike tropical temperatures (300K) are reached, water vapor is sufficient to make e∗ essentially
zero all on its own without any help from CO2. To underscore the relative role of CO2 and water
vapor, results for a dry atmosphere are given in the right hand panel of Figure 6.1. e∗ still goes
down with temperature, because temperature affects the opacity of CO2; however the decline is
much less pronounced than it is in the moist case. Even with 100mb of CO2 in the atmosphere, e∗
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falls only to about .4 at 320K, and significant infrared cooling of the surface is possible. In sum,
CO2 by itself is relatively ineffective at limiting surface cooling, but the opacity of water vapor
can practically eliminate surface infrared cooling at temperatures above 300K, unless the ground
temperature significantly exceeds the air temperature.

Though the results of Fig. 6.1 were were computed for Earth conditions, they give a fair
indication of the extent of surface radiative cooling on other planets whose atmospheres consist of an
infrared-transparent background gas mixed with CO2 and with water vapor fed through exchange
with a condensed reservoir. Through the hydrostatic relation, the surface gravity g affects the
mass of greenhouse gas represented by a given partial pressure; the lower the g the greater the
mass (and hence the greater the optical thickness), and conversely. This is especially important in
the case of water vapor, since in that case the partial pressure is set by temperature, through the
Clausius-Clapeyron relation. Thus, for a ”large Earth” with high g, it takes a higher temperature
to make the lower atmosphere optically thick. For example, calculations of the sort used to make
Figure 6.1 show that with 1mb of CO2 in a moist atmosphere having temperature 280K, increasing
g to 100m/s2 increases e∗ to .507 (vs .303 for g = 10m/s2). In the same atmospheric conditions,
e∗ falls to .102 for a ”small Earth” with g = 1m/s2. Increasing the pressure of the transparent
background gas makes the greenhouse gases more optically thick through pressure broadening.
With g = 10m/s2, increasing the background air pressure to 10bar has a very profound effect,
lowering e∗ to .094. Reducing the air pressure below 1000mb should in principle increase e∗, but in
fact it is found to very slightly reduce it, to .299. It appears that the reduction in opacity from less
pressure broadening is offset by the changes in the moist adiabat that occur when the air pressure
is reduced: the latent heat of condensation is spread over less background gas, so the temperature
aloft is greater and hence the air aloft contains more water.

Without water vapor, it takes an enormous amount of CO2 to make the lower atmosphere
optically thick. This case is relevant to Venus and Venus-like planets, which may be defined to
be planets having a dry rocky surface and a thick, dry CO2 atmosphere. It takes a very carefully
written radiation calculation to handle this regime properly, because many minor absorption bands
of CO2 become important when the atmosphere is very thick. Calculations performed with one of
these industrial-strength codes reveals the following, for a dry planet with the gravity of Venus.
With surface temperature of 300K, e∗ = .3 for a 1bar atmosphere, falling further to .014 at
10bar and .001 at 100bar (somewhat greater than Venus today). However, if the calculation is
done with a surface temperature of 700K instead, which is close to that of modern Venus, the
higher temperature shifts the surface emission to higher wavenumbers where it is not as effectively
absorbed and re-emitted by the CO2 in the atmosphere. In consequence, the values of e∗ are
uniformly greater: .34 at 1bar, .11 at 10bar and .06 at 100bar.

In the opposite extreme, atmospheres like the thin Martian atmosphere have very little effect
on the surface radiative cooling. For a Martian CO2 atmosphere on the dry adiabat with 7mb of
surface pressure, e∗ = .9 at 220K, falling only modestly to .86 at 280K. Recall that, per square
meter of surface, Mars actually has vastly more CO2 in it’s atmosphere than the Earth has at
present; allowing for the difference in gravity, a 7mb pure CO2 atmosphere on Mars has as much
CO2 per unit area as an Earth atmosphere with a CO2 partial pressure of 18.5mb at the ground.
In comparison, the present Earth’s atmosphere has a partial CO2 pressure of a mere .38mb (in
2006). The weak emission of the Martian atmosphere is due to the low total pressure, which yields
little collisional broadening of the emission lines. If the same amount of CO2 on Mars at present
were mixed into a 1bar atmosphere of N2, the effective surface emissivity e∗ falls to .75 at 230K
and .69 at 280K.

Clouds of an infrared-absorbing substance like water act just like a very effective greenhouse
gas in making the lower atmosphere optically thick (making ea close to unity). It takes very little
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cloud water to make the lower atmosphere act essentially like a blackbody. Infrared-scattering
clouds in the surface layer, like those made of methane or CO2, have a very different effect on the
back-radiation. First, they shield the surface from back-radiation coming down from the upper
atmosphere by reflecting it, rather than absorbing it; hence the shielding is accomplished without
the cloud layer heating up in response to absorption. More importantly, the downwelling radiation
from a reflective cloud is determined by the upwelling ground radiation incident upon it; the
resulting back radiation is then determined by the ground temperature, and is independent of the
cloud temperature. As a result, the surface cannot increase its longwave cooling by warming up
until it is substantially warmer than the atmosphere. This gives a scattering cloud great potency
to increase the ground temperature, if it allows sufficient solar radiation to get through to the
ground. Either IR-reflecting or absorbing clouds are different from a greenhouse gas, in that they
also strongly increase the shortwave albedo.

6.2.3 Radiatively driven ground-air temperature difference

Now we consider the equilibrium temperature difference between the ground and the overlying air
that would be attained in the absence of turbulent heat exchange. This temperature difference
is important in determining the extent to which convection is driven from below, by positive
buoyancy generated near the ground. We have already discussed this issue for the case in which
the atmosphere itself is in pure radiative equilibrium (See 3.6,4.3.4 and 4.8). Our concern now is
with what happens once convection has set in and altered the atmospheric temperature profile.

If the only heat exchange is radiative, the surface budget reads

(1− αg)Sg + σeaegT
4
sa = σegT

4
g (6.3)

Since the second term on the left hand side is positive, the infrared back-radiation always drives
Tg to exceed its no-atmosphere value. However, this value might be more or less than Tsa. To
examine this difference, we linearize the surface radiation budget about Tsa, which results in

(1− αg)Sg = σe∗egT
4
sa + bir · (Tg − Tsa) (6.4)

The linearized form can be immediately solved for the ground-air temperature difference. Substi-
tuting the expression for bir, we find

(Tg − Tsa) =
1
4

(1− αg)Sg

σegT 4
sa

Tsa −
1
4
e∗Tsa

=
1
4
((

To

Tsa
)4 − e∗)Tsa

(6.5)

where To is the no-atmosphere ground temperature, which satisfies σegT
4
o = (1 − αg)Sg. For

planets with an optically thick lower atmosphere, the ground temperature can get extraordinarily
hot relative to the air temperature if there are no turbulent fluxes to help carry away the heat. The
first term on the right hand side of Eq. 6.5 is large in tropical Earth conditions. For (1−αg)Sg =
300W/m2 and Tsa = 300K with eg = 1, it has the value 49K. But in tropical Earth conditions, e∗

is on the order of .1, so the second term subtracts little (15K for Tsa = 300K). Thus, the ground
temperature is 34K warmer than the overlying air temperature, or 334K. In reality, the sea surface
temperature hardly ever gets more than a few degrees warmer than the free-air temperature in the
Earth’s tropics.

Ironically, for planets which have such a strong greenhouse effect that the low level air
temperature is much larger than the no-atmosphere value, Tg − Tsa can be quite small even if the
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lower atmosphere is optically thick enough to make e∗ ≈ 0, and even in the absence of turbulent
heat fluxes. This conclusion is readily deduced from the factor multiplying Tsa in the second line
of Eq. 6.5. For example, Venus has a small To because of the highly reflective clouds which keep
sunlight from reaching the surface, yet has a high Tsa because of its strong greenhouse effect. In
consequence, this factor is only .0024 for Venus in the limit e∗ = 0, whence Tg − Tsa ≈ 1.8K.
Taking e∗ = .06, as we have estimated for Venus, would actually cause the ground to be slightly
cooler than the overlying air. For planets like Venus, the surface radiation budget is dominated
by infrared back-radiation, and the comparatively feeble sunlight has little power to drive the
ground temperature to values much greater than the overlying air temperature. It is situations
like the Earth’s tropics, which combine an optically thick lower atmosphere (due to water vapor
in our case) with a rather modest greenhouse effect, where the radiation budget tends to drive the
ground temperature to large values relative to that of the overlying air.

When the lower atmosphere is optically thin, as in the case of present Mars, the ground-air
temperature difference cannot be determined without considering the top-of-atmosphere balance
simultaneously with the surface balance. For an optically thin atmosphere, Eq. 6.3 tells us that Tg

is just slightly greater than its no-atmosphere value, but it does not by itself tell us how Tg relates
to Tsa. The general idea for an optically thin atmosphere is that the ground temperature is close
to what it would be without an atmosphere, while the atmosphere cools down until the energy
it loses by emission is equal to the energy gained by absorption of infrared upwelling from the
ground (plus atmospheric solar absorption, if there is any). This generally leaves the low level air
temperature much colder than the ground, since the atmosphere loses energy by radiating out of
both it’s top and its bottom. The most straightforward way to make this more precise is to consider
the radiative energy budget of the atmosphere, which is the difference between top-of-atmosphere
and surface energy budget.

The net infrared radiative flux into the bottom of the atmosphere is egσT 4
g − eaσT 4

sa, while
the infrared flux out of the top of the atmosphere is the OLR. As discussed in Chapter 4, the
OLR is the sum of the emission from the atmosphere itself and the portion of the upward emission
from the ground which is transmitted by the atmosphere. Let a+ be the proportion of upward
radiation from the ground which is absorbed by the full depth of the atmosphere, and express the
upward atmospheric emission escaping the top of the atmosphere in the form ea,topσT 4

sa. Then
OLR = ea,topσT 4

sa + (1 − a+)egσT 4
g . Let’s assume for the moment that the atmosphere does not

absorb any solar radiation. Then, in the absence of turbulent heat fluxes the atmospheric energy
budget reads

0 = OLR− (egσT 4
g − eaσT 4

sa) = a+egσT 4
g − (ea,top + ea)σT 4

sa (6.6)

whence
Tsa = (

a+eg

ea,top + ea
)

1
4 Tg (6.7)

Note that we have not yet made use of the assumption that the atmosphere is optically thin. For
an optically thick atmosphere with a very strong greenhouse effect (like Venus), a+ ≈ ea ≈ 1 and
ea,top ≈ 0, and so we recover our previous result that Tsa ≈ Tg for such an atmosphere,provided
the emissivity of the ground is close to unity. For an optically thin atmosphere, a+ ea,top and
ea are all small, so one needs to know precisely how small the absorption coefficient is relative
to the two emission coefficients. For an isothermal atmosphere –whether grey or not– Eq. 4.9
implies ea,top = ea. For a grey atmosphere, it follows in addition that a+ = ea,top = ea. In this
case Tsa = Tg/21/4, reproducing the result of Section 3.6. When the atmosphere is not grey, the
absorption coefficient differs somewhat from atmospheric emission coefficient, because the spectrum
of the upwelling radiation from the ground is different from that of the atmospheric emission (by
virtue of the difference between ground temperature and air temperature). However, the deviation
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from the grey gas result is typically modest for an isothermal atmosphere. For example, a 7mb
Marslike pure CO2 atmosphere with a uniform temperature of 230K has a+ = ea,top = ea ≈ .14

However, introduction of a vertical temperature gradient strongly affects the relative mag-
nitude of the three coefficients. If we take the same Marslike atmosphere with the same ground
temperature and pressure, but stipulate that the temperature is on the dry adiabat rather than
isothermal, then a+ and ea are reduced slightly (to .116 and .106, respectively), but are still
approximately equal. In contrast, ea,top is substantially reduced, to .043. In consequence, the
temperature jump at the ground is Tsa = Tg/1.281/4 – substantially weaker than the isothermal
case, but still quite unstable. Results for a dry Earth, with 300 ppmv of CO2 in a 1bar N2/O2

atmosphere having 300K surface temperature, are similar: a+ ≈ ea ≈ .14 while ea,top ≈ .04. What
is happening in both cases is that the atmosphere appears optically thin when averaged over all
wavenumbers, but is really quite optically thick in a narrow band of wavenumbers near the prin-
cipal CO2 absorption band. The optical thickness in this range introduces a strong asymmetry
in the upward and downward radiation, and also weights the absorption towards the bottom of
the atmosphere (which is also where a disproportionate amount of the infrared back-radiation is
coming from. A rule of thumb for such cases is that a+ and ea will have similar magnitudes, while
ea,top will be smaller (but, in the optically thin case, still non-negligable); it follows that the surface
temperature jump is weaker than the isothermal case, but still unstable. For an optically thin grey
gas the situation is different. In that case, ea = ea,top and both are less than a+; nonetheless, the
relative magnitudes are such that an unstable temperature jump can generally be sustained at the
surface even if the lower atmosphere is on a dry adiabat (see Problem ??).

The upshot of the preceding discussion is that, in the absence of atmospheric solar absorp-
tion, the radiative balance in an optically thin atmosphere almost always drives the surface to
be notably warmer than the overlying atmosphere, even if convection has established an adiabat
in the atmosphere. This provides a source of buoyancy that can maintain the convection which
stirs the troposphere and maintains the adiabat. A moist adiabat is more isothermal than the
dry adiabat, so our conclusion is even firmer in that case. Atmospheric solar absorption, on the
other hand, would warm the atmosphere relative to the surface, weakening or even eliminating the
unstable surface jump.

Moving on, let’s consider the temperature the ground of a planet would have in radiative
equilibrium at night-time, when Sg = 0. In this case, there is little to be gained by linearizing
the surface budget, as it reduces to simply σT 4

g = eaσT 4
sa, whence Tg/Tsa = (ea)1/4. For an

optically thick lower atmosphere, the infrared back radiation keeps the ground temperature nearly
equal to the air temperature. However, when the lower atmosphere is not optically thick, the
ground temperature plummets at night, or would do so if it had time to reach equilibrium. Cold
climates tend to be comparatively optically thin because they cannot hold much water vapor even
in saturation. For example, using the moist case in Figure 6.1, we find that when Tsa = 240K,
we find ea ≈ .3 with .1mb of CO2 in the atmosphere. This implies that at night the ground
temperature plunges toward the fearsomely cold value Tg = 177K. Liquid surfaces like oceans
cannot generally cool down rapidly enough to approach the night-time equilibrium temperature,
because turbulent motions in the fluid bring heat to the surface which keeps it warm. Solid surfaces
like snow, ice, sand or rock can cool down very quickly, though, and do indeed plunge to very low
temperatures at night. This situation applies to Snowball Earth and to the present-day Arctic
and Antarctic. Very cold climates are of necessity dry, because of the limitations imposed by
Clausius-Clapeyron. However, even relatively warm climates can be dry if the moisture source is
lacking. This is why deserts can go from being unsurvivably hot in the daytime to uncomfortably
cold at night. Turbulent fluxes can bring additional heat to the ground and moderate the night-
time cooling somewhat, but these fluxes tend to be weak in the situation just described, because
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turbulent eddies must expend a great deal of energy to lift cold dense air from the ground to the
outer edge of the surface layer (a matter taken up in more detail in Section 6.5)

The preceding discussion technically applies whether or not Tsa itself drops substantially
at night, but is most meaningful in the situation where the atmosphere cools slowly enough that
the atmosphere remains relatively warm as the night-time ground temperature drops. This is a
fair description of the situation in the massive atmospheres of Titan, Earth and Venus, except to
some extent during the long polar night on Titan and Earth. The tenuous atmosphere of present
Mars, in contrast, cools substantially throughout its depth during the night, even at midlatitudes.
In this situation, the relative temperature of air and ground at night is determined by the relative
rates of cooling of the two media, rather than radiative equilibrium. We will take up the issue of
thermal response time in detail in Chapter 8.

6.3 Basic models of turbulent exchange

Anybody who has watched dry leaves or dust blow around on a windy day has noticed that where
the air comes up against the surface there arises a complex mass of turbulent eddies. In comparison,
the interior of planetary atmospheres are fairly quiescent places, except in the immediate vicinity
of rapidly rising buoyant plumes and active cloud systems. The turbulent fluid motions near the
planetary surface exchange energy between the surface and the atmosphere, both in the form
of sensible heat (energy corresponding to the change of temperature in a mass) and latent heat
(energy associated with the change of phase of a condensible substance, with fixed temperature).
Representing the effects of turbulence is not like representing radiation, where we can write down
some basic physical principles then proceed through a set of systematic approximations until we
arrive at a set of equations we can solve. When it comes to turbulence, the state of physics is not
yet up to that challenge, and may never be. Instead, one must take a largely empirical approach
from the outset, constrained by some fairly broad principles such as conservation of energy.

In this section we will derive the so-called bulk exchange formulae describing the flux of a
quantity from the surface to the overlying atmosphere. The general idea is the same whether the
quantity is a chemical tracer, sensible heat (associated with temperature fluctuation) or latent
heat, so we will first present the formulae for a general tracer.

Let c be the specific concentration of some substance, and c′ be the fluctuating or ”turbulent”
part, usually thought of as a deviation from a time or space mean over some suitable interval.
Further, let w′ be the fluctuating vertical velocity at the top of the surface layer. Then, the flux
of the substance, in kg/m2, is

Fc = ρw′c′ ≈ ρsw′c′ (6.8)

where the overbar represents a time or space average and ρ is the total density of the gas making
up the atmosphere. We assume further that the surface layer is thin enough that the variation in
pressure and temperature across it is small enough that the variations in density can be neglected.
Thus, the density factor can be replaced by a constant typical surface density, ρs, and taken outside
the average. The ideal gas law states that ρ = p/RT . If the surface layer has a thickness of a
few tens of meters or less, then the hydrostatic law typically guarantees that the contribution of
pressure to the density variations is small. It is not inconceivable, however, that the temperature
difference across the surface layer could reach 10% of the mean, leading to corresponding changes
in the density. With a little more work, the effect of these fluctuations can be brought into the
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picture, but we will not pursue this refinement as the effects are probably overwhelmed by the
uncertainties in the representation of turbulence itself.

Next, we must estimate the correlation w′c′. We build this estimate from a typical vertical
velocity δw, a typical concentration fluctuation δc, and a non-dimensional factor 0 < a < 1
describing the degree of correlation. Thus, we write w′c′ = a · δw · δc. Next, we assume that δw is
proportional to the mean horizontal wind speed U at the top of the surface layer, so δw = s · U .
The constant of proportionality s can be thought of as a typical slope characterizing the turbulent
eddies, which is in turn roughly related to the roughness of the surface. Note that U is the wind
speed, and is therefore positive. We then assume that the typical concentration fluctuation scales
with the concentration difference between the air in contact with the ground and the edge of the
surface layer, so δc = f · (cg − csa), where csa is the concentration at the edge of the surface layer,
cg is that at the ground, and f is a nondimensional constant of proportionality. Putting it all
together and lumping the proportionality constants into the drag coefficient CD ≡ a ·s ·f , we write

Fc = ρsCDU(cg − csa) (6.9)

CD is called the drag coefficient because when c is taken to be the turbulent velocity itself, the
flux formula gives the flux of momentum, and hence the drag force on the surface. In writing
the flux in the form of Eq. 6.9, we have adopted the convention that a positive flux represents a
transfer of substance from the ground to the atmosphere. The turbulent flux acts like a diffusion,
transferring substance from regions of higher concentration to regions of lower concentration. It
is like a bucket-brigade, with partly empty buckets being handed downstairs from the top of the
surface layer to the ground, where they are filled and sent back upstairs again (or with full buckets
sent downstairs to be partly dumped out on the ground). The mass of substance in a bucket being
carried upstairs is proportional to ρscg, while the mass of substance in a bucket going downstairs
is proportional to ρscsa, while CDU gives the rate at which buckets are being handed up or down
the stairs.

6.3.1 Sensible heat flux

To obtain the sensible heat flux, we take cpT to be our tracer. This is essentially the dry static
energy (see Eq. 2.20), since the surface layer is thin enough that the height z can be taken to be
nearly constant. With this choice of tracer, Eq. 6.9 becomes

Fsens = cpρsCDU(Tg − Tsa) (6.10)

If the ground is warmer than the air, heat is carried away from the ground at a rate proportional
to the temperature difference. If the ground is cooler than the air, the sensible heat flux instead
acts to warm the ground.

If CD is independent of temperature, then Fsens is exactly linear in the difference between
the ground temperature and air temperature. Hence the coupling coefficient bsens – analogous to
bir – is simply bsens = cpρsCDU .

Note that the sensible heat flux becomes small when the atmosphere has low density. The
”wind-chill” factor on present Mars would be exceedingly weak! Conversely, very dense atmo-
spheres like those of Venus or Titan can very effectively exchange heat between the surface and the
atmosphere. With CD = .001,U = 10m/s and Tg−Tsa = 1K the sensible heat flux is .13W/m2 on
present Mars, 11W/m2 on Earth, 55W/m2 on Titan, and a whopping 540W/m2 on Venus. It is
for similar reasons that immersion in near-freezing water is far more life-threatening than walking
about scantily clad in air of the same temperature – water is about 1000 times denser than Earth
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air. One must take care to distinguish thickness of an atmosphere (in terms of density) from optical
thickness. An atmosphere can be thick (i.e. dense) while being optically thin, and conversely a
thin (low density) atmosphere can nonetheless by optically thick if the greenhouse gas it is made
of is sufficiently effective.

Now let’s suppose that the sensible heat flux dominates the surface energy budget. By ”dom-
inates,” we mean that the sensible heat flux due to a small departure from equilibrium (considering
the sensible heat flux alone) overwhelms the other terms in the surface energy balance. This would
be true if the wind speed and density were large, provided that the ground and atmosphere are
dry enough that evaporation remains small. Sensible heat flux vanishes when Tg = Tsa, so this is
the state that the system is driven to when sensible heat flux dominates. Taking the radiative and
latent fluxes into account would cause a small deviation from this limit.

6.3.2 Latent heat flux

Whatever the condensed substance making up the surface, some of the condensed substance will
transform into the vapor phase in the atmosphere contacting the surface, until it reaches the
saturation vapor pressure determined by Clausius-Clapeyron. If the winds then carry away this
vapor-laden air and replace it with unsaturated air, more mass will evaporate or sublimate from
the surface. Since the phase change involves latent heat, a flux of mass away from the surface cools
the surface by carrying away latent heat. Conversely, a flux of mass from vapor into the condensed
surface will warm the atmosphere where condensation occurs. All substances will evaporate or
sublimate to some extent, and whether the latent heat flux is significant is a matter of how big the
saturation vapor pressure is at the typical temperature of the surface. For water ice on Titan at
95K, the vapor pressure is under 10−15Pa, so the latent heat flux of water is utterly negligable.
The situation is the same for basalt at 300K on Earth, or even at 750K on Venus. However, the
vapor pressure of CO2 on present Mars, of liquid water or water ice on Earth, and of methane on
Titan are all high enough to allow substantial latent heat flux. Whatever the condensible substance
in question we will use terms like ”humidity” by analogy with the archetypal case of water vapor
on Earth. Also, for the sake of verbal economy we will often refer simply to ”evaporation” in
situations where the actually process might be either evaporation or sublimation.

In dealing with latent heat flux, it is more convenient to deal with the mass mixing ratio of
the condensible to dry air, rather than specific humidity. This makes it somewhat easier to treat
cases where the condensible makes up a substantial part of the total mass. Thus, we use the mass
mixing ratio rw as the tracer in Eq. 6.9. If ρa is the density of dry air in the surface layer, then the
mass of condensible per unit volume is ρarw and this mass carries a latent heat Lρwrw. we can write
the mixing ratio rsa at the edge of the surface layer as hsarsat(Tsa), where where hsa is the relative
humidity at the outer edge of the surface layer and rsat(T ) is the saturation mass mixing ratio.
In terms of saturation vapor pressure, the saturation mass mixing ratio is (Mw/Ma)(psat(T )/pa,
with pa being the partial pressure of dry air in the surface layer. Now suppose that at the ground
there is a reservoir of a condensed phase of the substance ”w” – an ocean, lake, swamp, snow
field, glacier or the surface of an icy moon. In this case, the vapor pressure in the air in contact
with the surface must be in equilibrium with the condensed phase, and must therefore follow the
Clausius-Clapeyron relation evaluated at the temperature of the ground. Equivalently, we can say
that rg = rsat(Tg). Using the two mixing ratios, the latent heat flux becomes

FL = LρaCDU(rsat(Tg)− hsa · rsat(Ta)) (6.11)

Alternately, using the definition of the mixing ratios and assuming the partial pressure of dry air



294 CHAPTER 6. THE SURFACE ENERGY BALANCE

to be approximately constant within the boundary layer, Eq. 6.11 can be written

FL =
L

RwTsa
CDU(psat(Tg)− hsa · psat(Tsa)) (6.12)

The latter form of the latent heat flux demonstrates that the flux is in fact unaffected by the
presence of the dry air. Assuming temperature and wind to be held constant, the evaporation from
the Earth’s ocean would remain unchanged even if all the N2 were taken out of the atmosphere.
This conclusion would no longer be valid if the gases in question had substantial non-ideal behavior,
for then the law of partial pressures would no longer hold.

Exercise 6.3.1 Derive Eq. 6.12. What do you have to assume about the air temperature within
the surface layer?

From Eq. 6.12 we observe that latent heat flux carries heat away from the ground when
the saturation mixing ratio at the ground is less than the mixing ratio of the surface layer. Since
typically hsa < 1, this can happen even if the ground is colder than the overlying air. We also
note that the latent heat flux becomes insignificant at sufficiently cold temperatures, since both
saturation vapor pressures in the equation become small in that limit.

Sensible and radiative heat transport carry no mass away from the surface, but latent heat
transport is of necessity accompanied by mass transfer. The mass flux into or out of the ground is
simply FL/L. The mass flux is needed for calculating the rate of ablation of glaciers by sublimation,
the drying out of lakes or soil by evaporation, and the rate of salinity change at the surface of an
ocean (since evaporation carries away the condensible but not the solute).

Now let’s look at how the fluxes behave when the temperature difference between the ground
and the outer edge of the surface layer is small. Carrying out a Taylor series expansion of the flux
about Tg = Tsa, as we did for the infrared cooling case, we write

FL = Eo + bL · (Tg − Tsa) (6.13)

Defining the characteristic flux F ∗
L ≡ CDUpsat(Tsa), we find

Eo = (1− hsa)
L

RwTsa
F ∗

L, bL =
1

Tsa
(

L

RwTsa
)2F ∗

L (6.14)

where Rw is the gas constant for the condensible. The Clausius-Clapeyron relation has been used
to substitute for dpsat/dT in the expression for bL. Eo is the heat flux due to evaporation or
sublimation that would occur with Tg = Tsa; it vanishes if the surface layer is saturated (hsa = 1),
but is positive otherwise. Both Eo and bL are proportional to the characteristic flux F ∗

L, which
vanishes vanishes as Tsa → 0, since the saturation vapor pressure vanishes like exp(−L/RwT ) in
this limit. As one might expect, latent heat flux becomes negligible at sufficiently low temperatures.
How low one must go for this to be the case depends on the gas in question. As temperature
increases, the characteristic flux becomes large, and hence Eo and bL become large as well. The
increase is abetted by the fact that L/RwT is a large number at typical planetary temperatures
(e.g. 18.06 for water vapor at 300K, or 10.3 for methane at 95K). For temperatures high enough
that bL becomes large, a modest ground-air temperature difference leads to a very large increase
in latent heat flux. This tends to make it hard for the ground temperature to differ much from the
free air temperature in such cases.

Table 6.1 gives some typical values of Eo and bL for water, carbon dioxide and methane. In
all three cases, we see that the latent heat flux rises very strongly with temperature. For water,
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H2O H2O H2O H2O CO2 CO2 CH4 CH4

Tsa (K) 230 273 300 320 150 160 80 95
Eo (W/m2) .72 40.8 193.3 557.8 52.5 182.1 93.2 640.0
bL (W/m2K) .28 11.2 38.6 98.0 24.4 74.4 55.6 243.

Table 6.1: Latent heat flux coefficients for various gases at selected temperatures Tsa. Computed
with U = 10m/s, CD = .001 and boundary layer relative humidity hsa = 70%.

latent heat flux is insignificant at temperatures of 230K or lower. The feeble latent flux of a
Watt per square meter or so would be utterly dominated by infrared cooling of the surface, or
by the sensible heat flux arising from a ground-air temperature difference of as little as 1K. This
corresponds to the situation in the Antarctic night of the present Earth, or to the daily average
tropical temperatures on a Snowball Earth. However, even at the freezing point of water, the
latent heat flux is quite substantial. With a 5K ground-air temperature difference, the flux would
be nearly 100W/m2, which is almost half of the typical midlatitude absorbed solar radiation in
the ocean, and roughly equal to the typical absorbed solar radiation in ice. The latent heat flux is
also comparable to the typical infrared cooling of the surface at such temperatures (inferred from
Figure 6.1 ). As temperature is increased further to values characteristic of the modern tropics, the
flux increases dramatically; it would take about 90% of the supply of absorbed solar energy going
into the ocean in order to sustain the evaporation arising from just a 2K ground-air temperature
difference. At these temperatures, the latent flux is considerably in excess of the surface infrared
cooling.

For the other gases in the table, the latent heat flux becomes substantial at much lower
temperatures. At temperatures comparable to the Martian polar Spring, the latent heat flux
due to CO2 sublimation is comparable to the water vapor values for Earth’s midlatitudes or
tropics (assuming the same degree of boundary layer saturation). These fluxes are particularly
consequential in light of weak supply of solar radiation on Mars, relative to Earth. Alternately one
may compare the latent flux to the infrared cooling of the surface in the thin Martian atmosphere
(σT 4

g , or 37W/m2 at 160K). Either way, we conclude that latent heat flux plays a key role in
determining surface temperature at places on Mars where seasonal CO2 frost is sublimating or
being deposited. At Titan temperatures, latent heat flux due to methane evaporation is enormous;
the solar radiation reaching Titan’s surface is well under 5W/m2, which is two orders of magnitude
less than the Methane evaporation one gets under the conditions of Table 6.1. Somehow or other,
conditions near Titan’s surface must adjust until the evaporation is reduced to the point where
it can be balanced by the supply of energy to the surface, but the numbers in the table tell us
that methane latent heat flux is the dominant constraint on the adjusted state. Ironically, Titan,
at 95K is like an extreme form of the Earth’s tropics, in that evaporation dominates the surface
energy budget to an even greater extent than it does in Earth’s tropics. If the temperature of the
Earth’s tropics were raised to 320K, as might happen in the high CO2 world following deglaciation
of a Snowball Earth, then Eo on Earth, too would greatly exceed the available solar energy, though
not to such an extent as it does on Titan. The way the surface conditions adjust to accomodate
this state of affairs will be taken up in the Section 6.4.

When the surface is sufficiently cold relative to the air, vapor from the air can be deposited
on the surface in the form of dew or frost. In this case the latent heat flux is negative, and carries
energy from the atmosphere to the ground. If the boundary layer is saturated (hsa = 1) then frost
or dew deposition occurs whenever Tg < Tsa. If the boundary layer is unsaturated deposition won’t
occur until the ground temperature is made sufficiently cold that the saturation vapor pressure
there falls below the partial pressure of the condensible in the overlying atmosphere (a temperature
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known as the ”dew point” or ”frost point”). When latent heat is being carried to the surface – as
it is during he seasonal polar CO2 frost formation on Mars – the rate of condensation is limited by
the rate at which the surface can get rid of the deposited latent heat. Since the surface is colder
than the atmosphere during deposition, sensible heat flux carries heat the wrong way to balance
the budget, so it is only infrared cooling of the surface that can sustain frost or dew. Otherwise,
the surface will simply warm in response to the deposited latent heat until it is no longer cold
enough for frost or dew to form.

Over land, there are two further complications that must be considered. The first is that
land, unlike a deep ocean or lake or a thick glacier, can dry out. If the land surface is a mix of
condensible and (essentially) noncondensible substance, the latent heat flux can exhaust the supply
of condensible, whereafter the boundary condition rg = rsat(Tg) is no longer appropriate. In the
absence of further supply of condensible at the ground, the latent heat flux must fall to zero. In
such a case, one must keep track of the mass of the condensible reservoir at the ground, and zero
out the latent heat flux when the reservoir is exhausted. This would be the case for thin snow
cover, scattered puddles, or soil moisture on Earth, for CO2 frost layers on Mars and for liquid
methane swamps on Titan. For soil moisture, a common simple model is the bucket model, in
which each square meter of soil surface is treated as a bucket whose capacity is determined by its
porosity and depth. The bucket is filled by rainfall, and emptied by evaporation. Once the bucket
is full, any additional rainfall is assumed to run off into rivers (which may or may not be tracked,
according to the level of sophistication of the model). As long as the bucket has some water in
it evaporation is sustained, but when the bucket is empty latent heat flux is zeroed out and only
radiative and sensible heat transfers at the ground are allowed. The bucket model may serve also
as a model of conditions at Titan’s surface, which may consist not only of liquid methane puddles
but also bogs consisting of beds of granular water ice sand or pebbles whose pores are saturated
with liquid methane.

The second complication over land concerns the effect of land plants. At present, Earth’s
climate provides the only example where this must be taken into account. Plants actively pump
water from deep storage, at rates determined by their own physiological requirements. This is
known as transpiration, and given that moisture flux over vegetated land is always some mix of
transpiration and evaporation, the joint process is called evapotranspiration. In this case, the
moisture boundary condition at the ground may be more appropriately represented as a flux
condition determined by plant physiology rather than setting the moisture mixing ratio at the
ground. The moisture flux may be limited by rate at which trees pump moisture, and not by rate
at which turbulence carries it away. The mixing ratio at the ground still cannot exceed saturation,
so when the transpiration becomes strong enough to saturate the air in contact with the ground,
one can revert to the previous model of conventional evaporation. Yet a further complication in
vegetated terrain is the very notion of ground and ground temperature. Is ”the ground” the forest
surface or the elevated leaf canopy? Is the ground temperature that of the leaf surface or the
soil? How do we take into acount the mix of illuminated hot leaves and relatively cool leaves in
shade? A proper treatment of these factors requires a detailed model of the microclimate in the
vegetation layer, which is beyond what we aspire to in this book. One need not abandon all hope
of estimating conditions over vegetated terrain, however. As a rule of thumb, dense forests that
get enough rainfall to survive in the long term tend to act more or less like the ocean, save for an
eleveated CD caused by greater surface roughness. Grasslands, shrub, tundra and prairie can be
crudely modeled using the bucket model.

When evaporation dominates the surface budget, equilibrium requires FL = 0, or equiva-
lently psat(Tg) = hsapsat(Tsa). Since psat is monotonically increasing in temperature, this relation
requires Tg < Tsa if the boundary layer air is unsaturated hsa < 1. Thus, evaporation or sublima-
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tion drives the ground temperature to be colder than the overlying air temperature. However, the
ground and surface could also achieve equilibrium by transferring enough moisture to the surface
layer that it becomes saturated (hsa = 1), in which case Tg = Tsa in equilibrium, as for the case
of sensible heat flux. The extent to which equilibrium is attained by adjusting temperature vs.
humidity depends on the competition between the rate at which moisture is supplied to the bound-
ary layer and the rate at which dry air from aloft is entrained into the boundary layer. Observed
boundary layers on Earth and Titan are significantly undersaturated, leading to the conclusion
that the ground temperature would be considerably less than the air temperature, if other fluxes
did not intervene. Using the linearized form of the latent heat, the equilibrium ground-air temper-
ature difference is Tg − Tsa ≈ −Eo/bL. For the conditions of Table 6.1, this is −2.6K for Titan at
95K. For a hot Earth at 320K, the difference is about −5.7K. There are currently no observations
of the state of saturation over the sublimating Martian CO2 frost cap, but given the saturation
assumed in the table the equilibrium occurs with Tg − Tsa ≈ −2.4K when the air temperature
is 260K. Thus, even when evaporation dominates, the equilibrium ground temperature does not
differ greatly from the overlying air temperature. This was also found to be the case when the
surface budget is dominated by sensible heat flux. It is only the radiative terms that can drive the
ground temperature to be substantially different from the overlying air temperature.

6.4 Joint effect of the fluxes on surface conditions

Including turbulent heat fluxes, the surface energy budget can be written

0 = Frad − Fsens − FL (6.15)

where Frad is the net radiative flux into the surface, given by

Frad = (1− αg)Sg + σeaegT
4
sa − σegT

4
g (6.16)

Without turbulent fluxes, the surface budget would be Frad = 0. Frad in isolation can drive the
ground temperature to be either larger or smaller (and perhaps much larger or smaller) than the
air temperature, according to the circumstances discussed in Section 6.2. Sensible heat flux always
drives the ground temperature and air temperature to become identical, whereas latent heat flux
drives the ground temperature to be colder than the air temperature, by an amount that depends
on the boundary layer relative humidity. When all three fluxes act in concert the resulting behavior
depends on the relative importance of the fluxes.

We’ll begin our tour of the range of possible behaviors by discussing how the surface balance
is accomplished for typical conditions in the Earth’s tropical oceans. Take Tsa = 300K, CD =
.0015, U = 5m/s and hsa = 80%. We’ll assume the absorbed solar radiation (1−αg)Sg is 320W/m2,
which is typical of clear-sky conditions over the tropical ocean. To determine the back-radiation,
we need ea. At tropical temperatures in the moist case, this coefficient is not very sensitive to
CO2, and has a value of about .9. The terms making up the surface balance are shown in the left
panel of Figure 6.2. As noted previously, the equilibrium ground temperature would be exceedingly
large without turbulent heat flux. In the figure, the no-turbulence equilibrium occurs where Frad

crosses zero, at around 336K. Adding sensible heat flux to the budget makes the slope of the flux
curve more negative, and brings the equilibrium ground temperature down to 316K. Adding in
evaporation steepens the curve yet more, and brings the ground temperature down to 303K, which
is only slightly warmer than the 300K temperature of the overlying air. At the equilibrium point,
the dominant balance is between the evaporation (206W/m2) and the absorbed solar radiation
(320W/m2), leaving only 114W/m2 to be balanced by the other terms. The sensible heat flux is
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Figure 6.2: **CAPTION

weak because the ground temperature and air temperature are nearly identical, which also makes
the net infrared cooling of the surface weak given that ea ≈ 1.

Next we’ll discuss a typical set of Earth polar or midlatitude winter conditions. We set the
absorbed solar flux (1 − αg)Sg to 100W/m2, taking a low value on account of the high albedo of
snow or ice and the reduced solar flux received at high latitudes. We’ll set Tsa = 265K, in which
case ea ≈ .6 with 300ppmv of CO2 in the atmosphere. The remaining parameters are held at the
same values used in the tropical case. The main differences from the tropical case are that in the
cold case the latent heat flux and the infrared back-radiation are weaker – the latter doubly so
because of the lower air temperature and the lower ea. The right panel of Figure 6.2 shows that
because of the weak solar radiation and the weak back radiation, the radiative equilibrium surface
temperature is nearly 5K colder than Tsa, in contrast to the tropical case. The situation here is a
less extreme version of the night-time radiative equilibrium temperature considered in Section 6.2.3.
Since ea is fairly small the temperature plummets at night when (1 − αg)Sg = 0. In the present
case, Sg doesn’t vanish, but its weak value is insufficient to warm up the ground temperature to the
point where it exceeds the air temperature. This is the typical daytime condition in high latitude
winter over ice and snow. Warm air imported from low latitudes helps to keep Tsa from getting
too cold in the polar and midlatitude winter, but the weak sunlight and weak back-radiation leave
the ground colder.

Since the radiative equilibrium ground temperature in the cold case is colder than the air
temperature, adding in sensible heat flux conveys heat from the atmosphere to the ground, warming
the ground up to just over 263K. The sublimation is weak at such cold temperatures, and causes
little additional change in the surface temperature. While the dominant balance in the tropical
case was between solar heating and evaporative cooling, the dominant balance in the cold case
is radiative, with slight modifications due to sensible heat flux. For any given air temperature,
the amount by which the ground temperature departs from the air temperature depends on the
absorbed solar radiation, but the sensible heat flux always pulls the ground temperature back
towards equality with air temperature. For example, at higher latitudes or deeper in the winter or
near sundown, we might take S = 50W/m2. In this case the radiation-only ground temperature is
246.6K, which is substantially below the air temperature; however, addition of sensible heat flux
brings the ground temperature back up to 260K. Nearer to noon, or as summer approaches, we
might have S = 150W/m2. In this case, the radiation-only ground temperature is 271.8K; again
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addition of sensible heat flux brings the ground temperature closer to air temperature, in this case
by cooling the ground to 267.1K, rather than warming it.

Next let’s estimate the maximum daytime temperature over a subtropical desert on Earth.
Solid surfaces like sand or rock take little time to reach equilibrium, and so the maximum temper-
ature can be estimated by computing the equilibrium temperature at local solar noon. Using the
present Earth solar constant and a relatively high albedo of .35 (typical of Sahara desert sand),
the absorbed flux is about 890W/m2. Over the interior of a dry desert, there should be little mois-
ture in the boundary layer, so set ea = .72 corresponding to a boundary layer relative humidity
of 20%. Finally, we take Tsa = 300K. In these circumstances the radiative equilibrium ground
temperature is a torrid 383K – hot enough to boil water. When sensible heat flux is added into
the budget, heat is transferred from the ground to the air, moderating the surface temperature.
Taking a relatively high drag coefficient CD = .003 on account of the roughness of land surfaces,
the equilibrium ground temperature is brought down to 330K if the surface layer wind speed is
5m/s. The temperature approaches the radiative temperature as the wind is made weaker; for
example when the wind is reduced to 2.5m/s the temperature increases to 349K. Consistent with
these estimates, the hottest satellite-observed ground temperatures do indeed occur in subtropical
deserts, and are near 340K. With a wind of 5m/s, making the ground moist and turning on evap-
oration brings the equilibrium temperature down from 330K to 306K. The general lesson is that
dry surfaces heat up greatly during the daytime. Their maximum temperature can greatly exceed
the overlying air temperature, especially when the wind is light. This can contribute to the urban
heat island effect, since constructed environments often replace moisture-holding surfaces with low
albedo impermeable surfaces like asphalt, which hold little water and dry out quickly. The surface
heating also leads to amplified climate change over land, in circumstances where a formerly moist
soil becomes dry, or vice versa.

∆T ≡ Tg − Tsa =
(1− αg)Sg − eg · e∗σT 4

sa − Eo

bir + bsens + bL
(6.17)

The numerator in this expression is the energy imbalance the surface would have if the ground
temperature were equal to the overlying air temperature. It can be either positive or negative and
its sign determines the sign of ∆T , since all three terms in the denominator are positive.

6.5 Monin-Obukhov theory

This is here mainly so we can deal with suppression of turbulence in stably stratified boundary
layers, which is quite important at night-time and over ice or snow. For moist systems, we point
out the importance of water-vapor buoyancy (and its generalizations) in destabilizing boundary
layers with the surface colder than the free atmosphere.

6.6 Mass balance and melting

6.7 Precipitation-temperature relations

Here we discuss the factors constraining precipitation. The discussion follows the lines of my dis-
cussion of the subject in my Nature article on deep-time hydrological cycle problems. The general
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theme is the importance of the surface budget constraint for precipitation, when the temperature
is high.

6.8 Simple models of sea ice in equilibrium

6.9 For Further Reading



Chapter 7

Radiative-convective models

7.1 Dry grey-gas atmospheres

Complete solution for the vertical structure of an atmosphere whose troposphere is on the dry
adiabat, and which is patched to a radiative-equilibrium stratosphere. Issue of why there is no
stable temperature jump at the tropopause. Behavior of the tropopause height in the optically thin
limit (easy; was already done in Chapter 3). Behavior of the tropopause height in the optically
thick limit (hard). Reappearance of the 4R/cp rule. Effect of lapse rate on the tropopause height.
Diagnosing the convective heat flux.

How to do convection in the time-dependent case (approach to equilibrium). Need to con-
serve dry static energy.

Effect of upper-atmospheric solar absorption. Nuclear winter. Post-bolide dust layer.
Stratospheric ozone. Tholin clouds on Titan and Early Earth. Note that Mars also has sub-
stantial internal heating, even in the troposphere, owing to dust. In the Mars case, the heating
has a profound effect because of the thin atmosphere, which implies that the solar absorption is
spread over a relatively small mass of atmosphere.

Grey gas models of water vapor feedback. Generalization to feedback by similar substances
(condensible CO2, or methane).

7.2 Surface vs. Top of Atmosphere Budgets: Who controls
the surface temperature?

Discuss why factors that affect the TOA radiation budget have much more leverage over the
surface temperature than things that affect the surface budget. It’s true that TOA changes work
their way into the surface budget, because the low level air temp. changes, and this changes all
fluxes between the atmosphere and surface. However these surface flux changes are a cause, not
an effect. This can be clarified by using a grey-gas model coupled to a simple surface turbulent
exchange scheme. First look at what happens if we make the atmosphere more optically thick aloft,
throwing off the TOA budget. Look at how surface adjusts, for various flux coupling coefficients.
Then do a case where we increase the downward radiation to the surface by increasing the low
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level optical thickness (e.g. add a low cloud), without affecting the OLR. What does this do to
surface temperature? Note that when the upper atmosphere is already optically thick, increasing
the low level opacity doesn’t change the atmospheric cooling, since increased emission to ground is
offset by decreased loss of downwelling IR from aloft, and increased emission to upper atmosphere;
this does change the amount of convective heat transport, though. What happens if the upper
atmosphere is optically thin, though? (e.g. if we have a pure nitrogen atmosphere and introduce
a surface cloud layer?) In that case, the increased emissivity could change the OLR (indirectly,
through its effect on surface temperature). This is a good case to analyze closely.

Could also look at what happen if we put in a cloud that reduces surface solar absorption,
but leaves TOA budget unchanged. (Do equilibrium case only).

Bottom line is that, with enough surface moisture, surface budget perturbations affect precip
more than temperature. Exception is dry land, where surface balance can add appreciable warming
to the general atmospheric warming.

Note that some aspects of this problem (e.g. the buffering of surface budget changes by
”stiffness” provided by evaporative heat transfer) where already discussed in the surface budget
chapter.

7.3 Real gas atmospheres

Numerical solutions for radiative-convective equilibrium for real gases.

7.4 Sensitivity of climate to CO2 changes

Glacial-interglacial cycles. Cretaceous hothouse. Anthropogenic global warming. CO2 threshold
for Neoproterozoic snowball.

In this section, we revisit the ice-albedo feedback bifurcation diagram, with an improved
OLR model, including real gas CO2, and also the water vapor feedback. Discuss what climate
would be like with just water vapor feedback and no CO2. How close would orbit have to be in
order to have an equable climate without CO2.

These estimates will be based on clear-sky radiation, with a few remarks about how clouds
complicate the picture.

7.5 Methane-dominated greenhouse

7.6 The atmosphere as a heat engine

In this section, we use the results of Chapter 2 to do vertically integrated budgets of atmospheric
dry static energy and of entropy. The consequences of these budgets are discussed. An important
aspect of atmospheric operation is that there is a pressure difference between where energy is put
into the system (near the surface) and aloft (where energy is lost by IR emission).

The climate is an open system, energetically. It is true that the rate of energy flowing in is



7.7. EFFECT OF THE DIURNAL CYCLE ON TROPOPAUSE HEIGHT 303

equal to the rate flowing out, but the behavior of the system is strongly influenced by the fact that
energy flows through the system – specifically that energy comes in in the form of Solar radiation,
and goes out in the form of longer wavelength radiation (typically infrared).

Conventional thermodynamic analysis uses pressure and volume. It is possible to do this for
the atmosphere, but volume isn’t a very natural thermodynamic variable for atmospheric work.
Discuss how to avoid explicit use of volume by using the dry (or moist) static energy. (height Z
replaces volume).

Idealized atmospheric Carnot cycle: Put heat in by solar heating of air in contact with
ground at ps. Lift adiabatically to prad and lose heat by IR radiative cooling there. Compress
adiabatically back to surface pressure and start over. Note that this process is not a closed loop:
the surface temperature you wind up with is lower than what you started with, so you can sustain
a bit of mechanical work with that temperature difference. (Estimate this). This process is not
quite like the classic Carnot cycle. Note that with latent heat, the atmosphere is like a steam
engine (or, following Pauluis, maybe more like a dehumidifier).

7.7 Effect of the diurnal cycle on tropopause height

7.8 The runaway greenhouse revisited

Radiative-convective model calculations of runaway greenhouse. Role of the stratosphere and the
tropopause height.

Alternate stratospheric mechanism (OLR limit through moistening of stratosphere).

Role of cloud effects in inhibiting true runaway state.

7.9 Mars, present, past and future

Greenhouse effect of the present thin Martian atmosphere.

Simple models of the interaction between temperature change and the sublimation of polar
CO2 deposits. (This will be based on an assumed pole-equatuator temperature gradient, as for
our simple models of ice-albedo feedback. A more precise treatment requires results from the
chapter on Seasonal Cycles). Analogy between CO2 sublimation effects and water vapor feedback
on Earth. ”Runaway dry-icehouse” due to loss of atmosphere by condensation.

What happens to Mars as the Sun continues to warm? Will Mars become habitable? If it
does, will it stay habitable?

Early Mars. Problems with the gaseous CO2 greenhouse as an explanation (owing to CO2

condensation). Need for consideration of CO2 clouds, which will be taken up in next chapter.

7.10 Titan

The Methane greenhouse effect on Titan. Methane condensation feedback (analogous to water
vapor feedback). Note that Nitrogen also condenses at Titan temperatures, so that mass of atmo-
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sphere changes with the climate.

Since Methane clouds are also infrared scatterers rather than absorbers, a full treatment
of Titan’s climate also requires IR scattering theory, developed in next chapter. On Titan (and
perhaps Early Earth), high altitude tholin clouds are also important.

7.11 Gas Giants

Two features distinguish the problem for gas giants like Jupiter or Saturn: (1) There is no surface
to absorb solar radiation, so solar energy is deposited entirely by internal absorption in the Atmo-
sphere; (2) Interior fluid motions can efficiently transport heat from the deep interior to the upper
layers, and can yield a heat source comparable to solar absorption. The latter effect is weak on
solid planets like Earth, since fluid motions in the very viscous mantle are sluggish.

This section explores the consequence of the above features, in radiative-convective models.
The use of planetary energy balance observations in determining the relative role of interior and
Solar heat sources was already discussed in Chapter 3.



Chapter 8

Variation of temperature with
season and latitude

Why is the Earth generally hotter near the Equator than at the poles? Why is it generally hotter in
Summer than in Winter, especially outside the tropics? Would this be true on other planets as well?
How would the pattern change over time, as features of the planet’s orbit vary? More generally,
in this section we seek to understand the features of a planet that determine the magnitude and
pattern of geographic and seasonal variations in temperature.

8.1 A few observations of the Earth

First, let’s take a look at how the Earth’s surface temperature varies with the seasons. Figure 8.1
shows the zonal-mean air temperature near the surface for representative months in each of the four
seasons. The first thing we note is that the temperature is fairly uniform in the tropics (30S-30N),
but declines sharply as the poles are approached. The temperature difference between the Equator
and 60N is 39K in the Winter but only 12K in the Summer. The Southern Hemisphere has a much
weaker seasonal cycle, except over the Antarctic continent: The temperature difference between
the Equator and 60S is 26K in the Winter and 22K in the Summer. However, over Antarctica,
poleward of 60S the seasonal cycle is extreme. Noting that the Northern Hemisphere has more
land than the Summer, the data imply that the oceans have a strong moderating effect on the
seasonal cycle. The temperature patterns in Figure 8.1 are what we seek to explain in terms of
the response of climate to the geographically and seasonally varying Solar forcing.

An even better appreciation of the effect of land masses on the seasonal cycle can be obtained
by examining the map of July-January temperature differences, shown in Figure 8.1. This map
shows that the strongest seasonal temperature contrast occurs in the interior of large continents,
and that the ocean temperature varies by at most a few degrees over the year – and even less in
the Tropics. The strong seasonal cycle of the Northern Hemisphere continents extends very little
beyond the coastlines, and the seasonal cycle of the Northern oceans has similar magnitude to that
of the more extensive Southern oceans.
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Figure 8.1: Observed zonal mean surface air temperatures for January, April, July and October.
Computed from NCEP data for 1970-2000.

8.2 Distribution of incident solar radiation

The geographical variations of temperature are driven by variations in the amount of sunlight falling
on each square meter of surface, and also by variations in albedo. Seasonal variations are driven
by changes in the geographical distribution of absorbed sunlight as the planet proceeds through
its orbit. Therefore, the starting point for any treatment of seasonal and geographical variation
must be the study of how the light of a planet’s sun is distributed over the spherical surface of
the planet. This section dealso only with the distribution of incident sunlight, or insolation. The
geographical distribution of the amount of sunlight absorbed is affected also by the distribution of
the albedo. The albedo variations can also affect the seasonal distribution of solar forcing through
seasonal variations in ice,snow, cloud and vegetation cover.

It will help to first consider an airless planet, so that we don’t at once have to deal with the
possible effects of scattering of the solar beam by the atmosphere. If our planet is far from its Sun,
as compared to the radius of the Sun, the sunlight encountering the planet comes in as a beam of
parallel rays with flux L. Even if the surface of the planet is perfectly absorbing, the sunlight the
planet intercepts is not spread uniformly over its surface; per unit area, parts of the planet where
the sun is directly overhead receive a great deal of energy, whereas parts where the Sun grazes the
surface at a shallow angle receive little, because the small amount of sunlight intercepted is spread
over a comparatively large area, as shown in Figure 8.2. The night side of the planet, of course,
receives no solar energy at all.

To obtain a general expression for the distribution of incident solar radiation per unit of
surface area, we may divide up the surface of the planet into a great many small triangles, and
consider each one individually. The solar energy intercepted by a triangle is determined by the
area of the shadow that would be cast by the triangle on a screen oriented perpendicular to the
solar beam. To compute this area, suppose that one of the vertices of the triangle is located at
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Figure 8.2: Map of July-January surface air temperature difference.
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Figure 8.3:

the origin, and that the two sides coming from this vertex are given by the vectors ~r1 and ~r2 By
the definition of the cross product, the area of the triangle is given by 2An̂ = (~r1 × ~r2) where n̂
is the unit normal to the plane containing the triangle. To obtain the area of the shadow cast by
the triangle, we apply the cross product to the projection of the vectors ~r1 and ~r2 onto the plane.
These projections are given by ~r1 − ẑ ~r1 · ẑ and ~r2 − ẑ ~r2 · ẑ, where ẑ is the unit vector pointing in
the direction of the Sun. The cross product of these two vectors is

(~r1 − ẑ ~r1 · ẑ)× (~r2 − ẑ ~r2 · ẑ) = ~r1 × ~r2 − (ẑ × ~r2)(~r1 · ẑ)− (~r1 × ẑ)(~r2 · ẑ) (8.1)

Now, the cross product of two vectors in the xy plane must point in the direction of the z axis.
Hence, we can obtain the magnitude of the above vector by taking its dot product with ẑ. This is
very convenient, since the dot product of ẑ with the second two terms vanishes, leaving us with

2A⊥ = ẑ · (~r1 × ~r2) = 2Aẑ · n̂ = 2A cos(ζ) (8.2)

where A⊥ is the area of the shadow and ζ is the angle between the normal to the patch of surface
and the direction of the sun. This is known as the zenith angle. When the the zenith angle is zero,
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the Sun is directly overhead, and when it is 90o the sunlight comes in parallel to the surface and
leaves no energy behind. Zenith angles greater than 90o are unphysical, since they represent light
that would have to pass through the solid body of the planet in order to illuminate the underside
of the surface; these are on the night side of the planet. If one draws a line from the center of the
planet to the center of the Sun, the zenith angle will be zero where the line intersects the surface
of the planet; this is the subsolar point. At any given instant, the curves of constant zenith angle
make a set of concentric circles centered on the subsolar point, with a zenith angle of 90o along
the great circle which at the given instant separates the dayside of the planet from the nightside.
If the surface were in equilibrium with the instantaneous incident solar flux, the subsolar point
would be the hottest spot on the planet, with temperature falling to zero with distance away from
the hot spot. As the planet rotates through its day/night cycle, a given point of the surface is
swept through a range of distances from the hot spot, leading to a diurnal temperature variation.
As the planet proceeds through its orbit in the course of the year, the diurnal cycle will change
as the orientation of the planet’s rotation axis changes relative to the Sun. Insofar as the surface
actually takes a finite amount of time to heat up or cool down, the diurnal cycle will be attenuated
to one extent or another.

As the next step toward realism, let’s now consider a rapidly rotating planet whose axis of
rotation is perpendicular to the line connecting the center of the planet to the center of its Sun.
If the axis of rotation is in fact perpendicular to the plane of the orbit, this situation prevails all
year round; otherwise, the condition is met only at the equinoxes, and indeed the condition defines
the equinoxes. We assume that the planet is rotating rapidly enough that the day-night difference
in solar radiation is averaged out and the corresponding temperature fluctuations are small. In
other words, the length of the day is assumed to be short compared to the characteristic thermal
response time of the planet’s surface, a concept which will be explored quantitatively in Section
8.3. Consider a small strip of the planet’s surface near a latitude φ, of angular width dφ. If a is
the planet’s radius, then the area of this strip is 2πa2 cos(φ)dφ, if angles are measured in radians.
The cross section area of the strip seen edge-on looking from the Sun determines the amount of
solar flux intercepted by the strip. This area is 2a2 cos2(φ)dφ when dφ is small. In consequence,
the incident solar radiation per unit area at latitude φ is L cos(φ)/π. At the Equator, the solar
radiation per unit area is L/π, which is somewhat greater than the value L/4 which we obtained
in Chapter 3 by averaging solar radiation over the entire surface of the planet. If the planet has
no atmosphere to transport heat or create a greenhouse effect, the equilibrium temperature as a
function of latitude is

T = (
L cos(φ)

πσ
)

1
4 (8.3)

The temperature has its maximum at the Equator, and falls to zero at the poles.

Exercise 8.2.1 For the geometric situation described above, derive an expression for the cosine of
the zenith angle as a function of latitude and longitude. Re-derive the expression for the daily-
average distribution of solar absorption by averaging the cosine of the zenith angle along latitude
circles.

Now we turn to the general case, in which the axis of rotation of the planet is not per-
pendicular to the plane containing the orbit. The angle between the perpendicular to the orbital
plane, and the planet’s axis of rotation, is known as the obliquity, and we shall call it γ. It can
be regarded as constant over the course of a planet’s year, though there are longer term variations
which will be of interest to us later. The task now is to determine the solar zenith angle as a
function of latitude, position along the latitude circle, and time of year.
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Let the point P be the center of the planet, and S be the center of the sun. If we draw a line
from P to S, it will intersect the surface of the planet at a latitude δ, which is called the latitude of
the sun, or sometimes the subsolar latitude. It is a function of the orientation of the planet’s axis
alone, and serves as a characterization of where we are in the march of the seasons. If the obliquity
of the planet is γ, then δ ranges from γ at the Northern Hemisphere summer solstice to −γ at the
Southern Hemisphere summer solstice. Let Q be a point on the planet’s surface, characterized by
its latitude φ and its ”hour angle” h, which is the longitude relative to the longitude at which local
noon (the highest sun position) is occurring throughout the globe. For radiative purposes, we just
need to compute the zenith angle ζ, defined previously. To get the zenith angle, we only need to
take the vector dot product of the vector ~QS and the vector ~PQ. To do this, it is convenient to
introduce a local Cartesian coordinate system centered at P , with the z-axis coincident with the
axis of rotation, the x-axis lying in the plane containing the rotation axis and ~PS, and the y-axis
orthogonal to the other two, chosen to complete a right-handed coordinate system.

First, note that by the definition of the dot product,

cos(ζ) =
~PQ · ~QS

|PQ||QS|
(8.4)

Further, ~PQ + ~QS = ~PS, so

cos(ζ) =
~PQ · ~PQ

|PQ||QS|
+

~PQ · ~PS

|PQ||QS|
≈

~PQ · ~PS

|PQ||QS|
(8.5)

where we drop the first term based on the assumption that the radius of the planet is a small
fraction of its distance from the Sun. For the same reason, |QS| in the denominator can with good
approximation be replaced by |PS|, leaving the expression in the form of a dot product between
two unit vectors. Letting n̂1 = ~PQ/|PQ| and n̂2 = ~PS/|PS|, the unit vectors have the following
components in the local Cartesian coordinate system.

n̂1 = (cos(φ) cos(h), cos(φ) sin(h), sin(φ)), n̂2 = (cos(δ), 0, sin(δ)) (8.6)

whence
cos(ζ) = cos(φ) cos(δ) cos(h) + sin(φ) sin(δ) (8.7)

When cos ζ < 0 the sun is below the horizon.

The cosine of the zenith angle attains a maximum value cos(φ − δ) when h = 0, and a
minimum value − cos(φ + δ) when h = ±π. Both values are above the horizon when |φ| >
|π/2 − δ|, corresponding to the perpetual polar summer day. Both values are below the horizon
when |φ| > |π/2 + δ|, corresponding to the perpetual polar winter night. At the solstices, δ takes
on its extreme values of ±γ. Therefore, perpetual day or night are experienced at some time of
year for latitudes poleward of π/2− γ. These circles are known as the Arctic and Antarctic circles
on Earth. Apart from the case of perpetual day or night, there is a terminator which separates
the illuminated from the dark side of the planet. The position of the terminator is given by

cos ht = − tan(φ) tan(δ) (8.8)

If Ω is the angular velocity of rotation of the planet, so that the planet’s day is Tday = 2π/Ω
time units, then the number of time units of daylight is 2ht/Ω = (ht/π)Tday. We shall adopt the
convention ht = 0 in the case of perpetual night, and ht = ±π for perpetual day.
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Exercise 8.2.2 For a given latitude φ, what δ yields the least hours of daylight? What δ yields
the most hours of daylight? The Earth’s present obliquity is 23.5 degrees, and it’s length of day
is 23.94hours. Sketch a plot of the maximum and minimum hours of daylight vs. latitude for the
Earth.

The diurnal variations of the zenith angle lead to hot days and cold nights. Where the
thermal response time is long enough to average out an appreciable portion of the diurnal temper-
ature variation, the daily mean incident solar flux is an informative statistic. Since the incident
solar flux per square meter of surface is L cos ζ, where L is the solar constant in W/m2, one can
obtain the daily mean flux by averaging cos ζ over a rotation period of the planet. This results in
a nondimensional flux factor f , by which one multiplies the solar constant in order to obtain the
daily mean solar radiation incident on each square meter of the planet’s spherical surface. The
daily average can be performed analytically, resulting in

f(φ, δ) =
1
2π

∫ ht

−ht

cos(ζ)dh

=
1
π

[cos(φ) cos(δ) sin(ht) + sin(φ) sin(δ)ht]

(8.9)

where ht is determined by Eq. 8.8. This derivation of the daily average assumes that the length
of the day is much less than the length of the year, so that δ may be regarded as constant over the
course of the day. If the length of the day is a significant fraction of the length of the year, as is be
the case for nearly tide-locked planets like Mercury or Venus, the expression still gives the correct
average along the latitude circle, but this average is no longer identical to the time average over a
day.

During the equinoxes, δ = 0 and f = cos(φ)/π, independant of the obliquity. This agrees
with the result we obtained earlier by direct geometrical reasoning. At other times of year, the
daily mean flux is governed by two competing factors: the varying length of day, which tends to
produce higher fluxes near the summer pole, and the average zenith angle, which tends to produce
high fluxes near the subsolar latitude (which remains near the Equator if the obliquity is not
too large). The latitude where the maximum daily mean insolation occurs is always between the
subsolar latitude δ and the summer pole. For δ = 0 the maximum occurs at the Equator, and a
little numerical experimentation shows that the latitude of the maximum increases to about 43.4o

when δ = 23.4o (and similarly, with reversal of signs, in the Southern hemisphere). For larger δ,
the length-of-day effect wins out over the slant angle effect at the pole, and the maximum occurs
at the summer pole itself. This state of affairs just barely happens at the solstice for the present
obliquity of Earth and Mars; as a result, the summer hemisphere solstice insolation is fairly uniform
in these two cases. It is also useful to note that the daily mean insolation at the summer pole
exceeds the daily mean insolation at the Equator when |δ| > 17.86o.

To obtain a general appreciation of the seasonal cycle, recall that δ varies from −γ during
the southern hemisphere summer solstice to γ at the northern hemisphere summer solstice, taking
on a value of zero at the equinox which lies between the two solstices. Consider a planet with
uniform albedo, so that the absorbed solar radiation is determined by the distribution of incident
solar radiation. Suppose further that the thermal response time is long enough to average out the
diurnal cycle, but short compared to the length of the year. If the obliquity is below 23.4o, the
”hot spot” starts some distance poleward of the Equator in the Southern hemisphere, moves to
the Equator as the equinox is approached, and then migrates a similar distance into the Northern
hemisphere as the Northern summer solstice is aproached. If the obliquity is greater than 23.4o,
the hot spot starts at the South Pole, discontinously jumps to −43.4o at the point in the season
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where the subsolar latitude crosses −23.4o, smoothly migrates throught the Equator and on to
43.4o when the subsolar latitude approaches 23.4o, and then discontinuously jumps to the North
Pole. Note that in either case, the hot spot crosses the Equator twice per year, at the equinoxes;
the two solstices are the coldest times at the Equator. The climate at the Equator has a periodicity
that is half the planet’s year.

It only remains to express δ as a function of the position of the planet in its orbit. The
planet is spinning like a top, and if there are no torques acting on the planet (an assumption
we will relax later) its angular momentum is conserved. Hence the rotation axis keeps a fixed
orientation relative to the distant stars throughout the year. This is why Polaris is the Northern
Hemisphere pole star all year around. Let κ be the angle describing the position of the planet, as
shown in Figure 8.4. We shall adopt the convention that κ = 0 occurs at the Northern Hemisphere
summer solstice. We shall refer to κ as the season angle, but it is more commonly (and more
obscurely) referred to as the longitude of the sun. In our case, we have defined the longitude of the
sun relative to the Northern Hemisphere summer solstice, but other choices are also common, for
example defining it relative to the Northern winter solstice or the Spring equinox. When discussing
the progression through the seasonal cycle on planets other than Earth, the season angle is almost
universally used to describe where the planet is in its cycle, since this description obviates the need
to make up names for months for each planet. If we project the rotation axis onto the plane of
the ecliptic (i.e. the plane containing the planet’s orbit), then the angle made by this vector with
~PS is equal to κ. The rotation axis projected onto the plane of the ecliptic acts like the hand of a

clock, which rotates around the clock face once per year, though at a non-uniform rate if the orbit
is not perfectly circular.

Let n̂ be the unit normal vector to the plane of the ecliptic, and n̂a be the unit vector in
the direction of the rotation axis. Introduce a new cartesian coordinate system with x pointing
along ~PS, z pointing along n̂, and y perpendicular to the two in a right-handed way. Then
n̂a = (cos(κ) sin(γ), sin(κ) sin(γ), cos(γ)) and the latitude of the sun is the complement of the
angle between n̂a and the x axis, whence

sin(δ) = cos(
π

2
− δ) = cos(κ) sin(γ) (8.10)

In the limit of small obliquity, this equation reduces to δ = γ cos κ(t). For a circular orbit, κ(t) = Ωt,



312 CHAPTER 8. VARIATION OF TEMPERATURE WITH SEASON AND LATITUDE

where Ω is the orbital angular velocity (2π divided by the orbital period). In this special case, the
subsolar latitude varies cosinusoidally over the year, with amplitude given by the obliquity. This
is actually not a bad approximation even for the roughly 23o current obliquity of Earth and Mars,
agreeing with the true value to two decimal places. At the opposite extreme, when γ = 90o, the
subsolar latitude is given by δ = π/2− κ, which is not at all sinusoidal.

Exercise 8.2.3 Compute the length of day as a function of the time of year for the latitude at
which you are currently located. Compare with data for the current day, either observed yourself
or presented in the newspaper weather report. Compute the length of a shadow that would be
cast by a tall, thin skyscraper of height 100m, as a function of the time of day and time of year at
your latitude.

Contour plots of the flux factor for various obliquities are shown in Figure 8.5. These plots
assume the orbit to be perfectly circular, so that there is no variation in distance from the Sun in
the course of the year. Over the course of the year, the hot spot moves from south of the Equator to
North of the Equator, and back again, passing over the Equator at the equinoxes. The amplitude
of the excursion increases with obliquity, and goes all the way from pole to pole for sufficiently
large obliquity. Earth, Mars, Saturn,Titan, and Neptune with present-day obliquities of 23.5o,
24o,26.7o,26.7o,and 29.6o respectively, are qualitatively like the 20o case. The pattern of variation
of incident solar radiation which forces the seasonal cycle is similar in all these cases. However, the
nature of the seasonal cycle will differ amongst these planets because the differing nature of the
atmospheres and planetary surfaces will lead to different thermal response times. In the case of
gas giant planets, another variable is the proportion of energy received from solar energy vs. the
that received by transport from the interior of the planet. Insofar as the latter becomes dominant,
the role of solar heating, and hence the prominence of the seasonal cycle, becomes less. Jupiter has
a low obliquity (3.1o), which, compounded by a high proportion of internal heating (** per cent)
should lead to a minimal seasonal cycle. At the opposite extreme is Uranus, which has an obliquity
of nearly 90o, and a small proportion (about ** percent) of internal heating. Venus is so slowly
rotating that its obliquity is of little interest. Obliquity is not constant in time; it varies gradually
over many thousands of years. We will see in Section 8.5.1 that relatively slight variations in the
Earth’s obliquity are believed to contribute to the coming and going of the ice ages. The obliquity
of Mars varies more dramatically, and perhaps with greater consequence; at various times in the
past it could have reached values as high as 50o and as low as 15o.

If the thermal response time of the planet is a year or more, then a considerable part
of the seasonal cycle is averaged out and the annual mean insolation becomes an informative
statistic. It will be seen in the next section that this is the case for watery planets like the Earth.
The annual mean flux factor is shown in Figure 8.6. When obliquity is small, the poles receive
hardly any radiation. As obliquity is increased, the polar regions receive more insolation, at the
expense of the equatorial regions. For Earthlike obliquity, the maximum insolation occurs at the
Equator, which is why this region of Earth’s surface tends to be warmest. When the obliquity
exceeds 53.9o, the annual mean polar insolation becomes greater than the annual mean equatorial
insolation. For such a planet, the poles will be warmer than the tropics, provided that the thermal
response time is long enough to average out most of the seasonal cycle. Consider a planet with 20o

obliquity, zero albedo, and a very long thermal response time. If the planet were put in Earth’s
orbit about the Sun, the Solar constant would be 1370W/m2, yielding equatorial insolation of
422W/m2 and polar insolation of 149W/m2, based on the flux factors given in Figure 8.6. In
the absence of any greenhouse effect or lateral energy transport by atmospheres or oceans, the
equatorial temperature would be 294K and the polar temperature would be 226K. If one takes into
account the clear-sky greenhouse effect of an Earthlike atmosphere with 300ppm CO2 and 50%
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Figure 8.5: The seasonal and latitudinal distribution of daily-mean flux factor for four different
values of the obliquity. In these plots, a circular orbit has been assumed. To obtain the daily mean
energy flux incident on each square meter of the planet’s surface, one multiplies the flux factor by
the solar constant. For example, if the solar constant is 1000W/m2, the incident solar flux at the
pole during the Summer solstice is about 700W/m2 if the obliquity is 45o.
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Figure 8.6: The annual mean flux factor for various obliquities, assuming a circular orbit.

relative humidity using the OLR results given in Chapter 4, the polar temperature rises to 237K,
but the equatorial temperature becomes problematic: The annual mean equatorial solar flux is
near or above the runaway greenhouse threshold discussed in Chapter 7, leading to extremely high
or even unbounded equatorial temperatures. Lowering the relative humidity to 20% to reflect the
fact that much of the tropical troposphere is very dry (recall Chapter ??) still leaves the tropics
with temperatures in excess of 350K. Part of the problem lies in the neglect of albedo. Simply
using the observed planetary albedo in the tropics gives the wrong answer, because almost all
of the cloud albedo is offset by the cloud greenhouse effect in the present climate (Chapter ??).
Using an albedo of .15, based on the observed tropical clear-sky albedo, reduces the equatorial
solar absorption to 360W/m2, which is in balance with a tropical temperature of 318K assuming
a relative humidity of 20%. This is still well in excess of the observed tropical temperature. In the
real atmosphere, heat transports due to large scale atmospheric and oceanic motions remove some
of the heat from the tropics and deposit it at high latitudes, reducing the tropical temperatures
and increasing the polar temperatures. Since incorporation of ice-albedo effects would reduce the
polar temperatures below the estimates given above, such transports are also needed to bring the
polar temperatures up into the observed range. Some elementary models of heat transport will be
discussed in Chapter 10, though a proper treatment of the subject must be deferred until Volume
II, where the necessary fluid dynamical background will be developed.

If we put the same planet at the orbit of Mars the temperatures become 238K and 183K with-
out any greenhouse effect. Since there is little water vapor feedback at such low temperatures, the
greenhouse effect is less dramatic in this case. Addition of an Earthlike atmosphere with 300ppmv
CO2 would increase the equatorial and polar temperatures to 256K and 192K, respectively, based
on a linear OLR fit in the range 200K to 250K (specifically, OLR = 80.6+1.83(T −200)). Thus, a
waterworld placed at the orbit of Mars would require a much stronger greenhouse effect than the
Earth’s to avoid succumbing to a snowball state.

The effects of obliquity on the seasonal and latitudinal pattern of insolation may be summed
up as follows. Increasing obliquity increases the intensity of the seasonal cycle at mid to high
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Figure 8.7: Schematic effect of atmospheric scattering on insolation

latitudes. The summer insolation gets steadily higher relative to the global mean, and a greater
area of the winter hemisphere exposed to cold perpetual night or low insolation. Increasing obliquity
also increases the annual mean polar insolation, though the way this affects polar climate depends
on the thermal response time of the atmosphere-surface system. The increase might show up as
very hot summers and bitterly cold winters, or as year-round warming, accordingly as the response
time is fast or slow.

The preceding results on incident solar radiation have been derived in the absence of an
atmosphere, but can still be used if there is in intervening atmosphere which may absorb or scatter
solar radiation before it reaches the surface. The general geometry is illustrated in Figure 8.7.
In this case, one suspends an imaginary sphere at an altitude above which the atmosphere is too
thin to have a signficant effect on the solar radiation. The preceding results then give the solar
flux entering each square meter of the surface of this sphere, and the angle at which the light
enters the atmosphere. This is all that is needed as input to one-dimensional scattering models
of the sort discussed in Chapter 5. One simply divides up the atmosphere into a series of patches
near each latitude and longitude point, within which the properties are considered uniform, and
applies a one-dimensional column model to each of these patches. As illustrated in 8.7, if the
horizontal size of the patches is large compared to the depth of the atmosphere, the energy loss by
horizontal scattering from one patch to another can be neglected, and each patch can be considered
energetically closed, so far as radiation is concerned. The atmosphere has three effects, which can
be inferred from the column radiation model: (1) Some of the incident solar radiation reaches the
surface in the form of diffuse radiation at a continuous distribution of angles, rather than at the
zenith angle, (2) Some of the solar radiation is absorbed in the atmosphere, rather than at the
surface, and (3) some of the incident solar radiation is reflected back to space instead of entering
the climate system. Of the three effects, it is the last – the effect of the atmosphere, including its
clouds, on planetary albedo – that is most important for determining the climate. Diffuse radiation
and atmospheric absorption do not change the amount of energy entering a column, but only the
place and angle with which it enters. Often, this is of little consequence, so one can get a good
estimate of the planet’s temperature if one can obtain an estimate of the planetary albedo from
one means or another.

The above reasoning can even to some extent apply to gas giant planets which have no
surface. One can still define the imaginary sphere through which radiation enters the system, as
before, but the problem comes in defining a characteristic depth scale. For the purposes of solar
radiation, it suffices to consider the depth of atmosphere over which most of the solar radiation is
absorbed, in effect a ”photic” zone. This is typically shallow compared to the prodigious size of
the gas giants. The full problem, including internal heat sources and dynamical motions, might
require consideration of a deeper layer. Whatever the depth of this ”active layer,” the preceding
reasoning applies provided one can sensibly model the large scale aspects of the climate on the
basis of averaging over patches of horizontal extent that is large compared to the characteristic
depth scale. For giant planets, as for the Earth or any other planet, the essential difficulty is
that clouds, temperature, water vapor and other climate variables are manifestly not uniform over
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length scales comparable to or longer than the depth of the atmosphere. One makes progress by
boldly assuming that one can represent the effects of these fluctuating quantities by their large
scale averages. It is an assumption that is difficult or impossible to justify mathematically, and in
some cases may not even be true. With the present state of the art, one can only make progress
by proceeding on the basis of the averaging assumption, and seeing how things work out.

8.3 Thermal Inertia

At several points in the preceding discussion, we have needed to make reference to the thermal
response time of the system. In the present section, we shall make this notion precise. The heat
storage in the planet’s solid or liquid surface, and in its atmosphere means that it takes time for the
system to heat up or cool down. The strength of this effect, known as thermal inertia, determines
the extent to which the seasonal and diurnal fluctuations are averaged out in the climate response.

8.3.1 Thermal inertia for a mixed-layer ocean

The concept of thermal inertia is well illustrated by consideration of heat storage in the mixed
layer of an ocean. Consider a layer of incompressible fluid with density ρ and specific heat cp,
which is well-mixed by turbulence to a depth H. The assumption of well-mixedness implies that
any heating or cooling applied to the surface is distributed instantaneously throughout the depth
of the mixed layer, whose temperature thus remains uniform. Let S(t) be the solar flux heating
the mixed layer, and assume that the cooling of the mixed layer (by infrared radiation or other
means) can be written as a function of temperature, which we shall call F (T ). For example, if the
atmosphere above the ocean has no greenhouse effect and carries no heat away from the surface by
turbulent transport, the cooling is the radiative cooling F (T ) = σT 4. The energy balance equation
for the mixed layer is then

d

dt
ρcpHT = S(t)− F (T ) (8.11)

Exercise 8.3.1 Consider a planet with a 50m deep mixed layer water ocean (cp = 4218J/kg, ρ =

1000kg/m3). Suppose that the atmosphere for some reason has no effect whatsoever on the surface
energy budget. (Why would this situation be hard to arrange, even for a pure N2 atmosphere?)
Hence F (T ) = σT 4. Suppose that the temperature of the polar ocean is 300K when the sun sets and
the long polar night begins. Find a solution to Eq. 8.11 for this situation, and use it to determine
how long it takes for the ocean to fall to the freezing point (about 271K for salt water)?

We may define a thermal inertia coefficient µ = ρcpH for the mixed layer ocean. If an
amount of energy ∆E is added to or removed from a column of the ocean having a cross section of
one square meter, the corresponding temperature change is ∆E/µ. For a 50m mixed layer water
ocean, µ = 2.1 · 108J/(m2K), so that an energy flux of 100W/m2 out of the surface would lead to
a cooling rate of 100/µ = 4.74 ·10−7K/s = .04K/day. Clearly, a rather shallow layer of well-mixed
water can buffer a considerable surface flux imbalance. The Earth’s ocean is several kilometers
deep, but it is only the upper few tens of meters that are well mixed on short time scales; 50m is
in fact a reasonable approximation to the overall mixed layer depth of Earth’s ocean, though there
are geographical variations. Most other liquids would do about as well as water at storing heat. It
is primarily the mixing depth that determines the thermal buffering effect of a planet’s ocean.
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Atmospheres also have thermal inertia, which can be considered in a fashion analogous to
a mixed layer. The entire mass of the troposphere is well-mixed, and this generally makes up
most of the mass of an atmosphere. In that case, the energy per square meter needed to raise
the temperature of an atmosphere by 1K is µ = cpps/g, where ps is the surface pressure, g the
acceleration of gravity and cp the mean specific heat of the gas making up the atmosphere. It is
convenient to express this value in terms of the depth of a water mixed layer ocean, Heq which
would have the same thermal inertia coefficient. For the Earth atmosphere, Heq = 2.4m, which
is insignificant in comparison to the mixed layer depth of the ocean. Hence, one expects the
Earth’s atmosphere to come into equilibrium much more quickly than the ocean. The current 6mb
CO2 atmosphere of Mars has Heq = .03m, while the massive atmosphere of Venus has Heq in
excess of 155m. Neither Mars nor Venus has an ocean to buffer the seasonal cycle, but the Venus
atmosphere alone can be expected to have a considerable moderating effect, whereas present Mars
should behave more or less as if each point of the globe is in instantaneous equilibrium. Early
Mars (circa 4 billion years ago) may have had a 2 bar CO2 atmosphere, which would translate
into a 10m equivalent mixed layer. This is considerably greater than that of Earth’s atmosphere,
but still not enough to have much moderating effect, in view of the fact that Mars’ year is about
twice as long as Earth’s. Titan has a mostly N2 atmosphere with a surface pressure only slightly
in excess of Earth, but it’s weak gravitational acceleration of 1.35m/s2 means that this pressure
translates into a much greater mass of atmosphere per square meter of planetary surface. Thus,the
Titan atmosphere has an equivalent mixed layer depth of about 24m. Given the low temperature
of Titan, and consequent low rate of energy loss by infrared emission, this value is expected to
yield a very considerable buffering effect on Titan’s seasonal cycle, regardless of whether there is a
liquid ocean at the surface. For example, based on a typical surface temperature of 90K, blackbody
emission would cool the planet only at a rate of about 1K per 300 Earth days, if insolation were
completely shut off.

Exercise 8.3.2 The specific heat of liquid Methane is 3450.J/K. How deep would a well-mixed
methane ocean on Titan have to be for it to have thermal inertia comparable to Titan’s atmosphere?

We shall now consider some simple solutions to the mixed layer model, keeping in mind that
this model applies to atmospheres as well as oceans, with a suitable choice of the equivalent mixed
layer depth. At this point we assume that ρcpH is constant, though models with a time-varying
mixed layer depth are possible. Without any loss of generality we may write the insolation and
temperature in the form

S = So + S′(t), T = To + T ′(t) (8.12)

where So and To are the time means of S and T and the deviations have zero time mean. Now,
suppose that T ′ << To for whatever reason; this need not require that S′ << So, since the
temperature fluctuations might be small by virtue of a slow response time of the system. Be-
cause the temperature fluctuations are small, the surface cooling can be expanded about To and
approximated by a linear function:

F (T ) = F (To) + aT ′(t), b =
dF

dT
(To) (8.13)

Now we choose To to be the equilibrium temperature corresponding to the mean insolation So, i.e.
F (To) = So. With these assumptions the equation for the temperature fluctuation becomes

dT ′

dt
=

1
ρcpH

(S′(t)− bT ′) (8.14)
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or equivalently, if we define the relaxation time τ = (ρcpH)/b,

dT ′

dt
+

T ′

τ
=

1
ρcpH

S′(t) (8.15)

We can distinguish two limiting cases for Equation 8.15. When the time scale over which
S′ varies is slow compared to τ , then the first term on the left hand side is negligable compared
to the second, whence the solution becomes T ′ = τS′(t)/(ρcpH) = S′(t)/a. In other words, the
system acts as if it’s in equilibrium with the instantaneous solar radiation at each time. In the
opposite limit, the time scale of the solar fluctuation is rapid compared to τ , in which case it is
the second term on the left hand side that may be neglected. Thus,

T ′(t) =
1

ρcpH

∫ t

0

S′(t′)dt′ (8.16)

In this case, the temperature is out of phase with the heating, and represents a time average of
the fluctuating heating. The peak temperature occurs later than the peak solar heating, since it
takes time for the mixed layer to respond to the accumulating heating. Further, in this case, the
seasonal temperature fluctuation becomes small as the mixed layer depth is made large, since the
mixed layer becomes more and more efficient at averaging out the seasonal fluctuations of solar
flux.

The variations in solar radiation over the course of a year are not sinusoidal, but we can
nonetheless gain some further insight into the seasonal cycle by writing S′ = S1 cos(ωt). For
this form of forcing, Eq. 8.15 can be solved most easily by using complex exponentials. Since
S′ = S1Real(exp(−iωt)), the solution may be written T ′ = Real(A exp(−iωt)). Substituting this
form of solution into Eq. 8.15 we find

A =
S1

ρcpH

1/τ + iω

1/τ2 + ω2
= |A|ei∆ (8.17)

where the phase and amplitude are

∆ = arctan(ωτ), |A| = S1

ρcpH

1√
(1/τ2 + ω2)

(8.18)

With these definitions, the solution can be written

T ′(t) = |A| cos(ωt−∆) (8.19)

The character of the response depends on the period of the forcing relative to the characteristic
response time of the system. This determines both the amplitude of the fluctuation and the phase
shift relative to the forcing. For ωτ << 1 we have ∆ = 0 and |A| = S1/a. For ωτ >> 1 we
have ∆ = π/2 and |A| = S1/(ρcpHω). Note that in this case the temperature fluctuation becomes
weak in inverse proportion to the frequency of the solar forcing fluctuation. These are special cases
of the limits discussed previously, but we now have the further advantage of an explicit formula
showing how the phase and amplitude of the seasonal cycle vary between the two extreme cases.

So far, we have not specified the flux which is to be used for the heat loss term F (T ) in
Eq. 8.11, or for the damping coefficient b in the linearized form of the equation. One candidate
for this flux is the top-of-atmosphere infrared heat loss. The other is the combined turbulent and
infrared heat exchange between the planetary surface and the atmosphere, discussed in Chapter
6. There are two circumstances in which the top-of-atmosphere flux (the OLR) is the appropriate
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one to use. If the time scale under consideration is long enough that the surface budget can come
into equilibrium, then the net solar flux absorbed at the surface is equal to the net turbulent and
infrared flux passing from the surface into the atmosphere. In this case, we may consider the
energy budget of the surface-atmosphere system as a whole, whence the OLR gives the heat loss
from the system. The thermal inertia is provided by the atmosphere, and one uses he atmosphere’s
equivalent mixed layer depth in the mixed layer model equations. Alternately, if the response time
of the atmosphere is short enough compared to the time scale under consideration, the energy
budget of the atmosphere comes into equilibrium. In this case, the net energy exchange between
the surface and the atmosphere must equal the OLR, since otherwise the atmosphere would warm
up or cool down until equilibrium is achieved. Hence, one can use the OLR for the heat loss term
in the surface energy budget, obviating the need to know the detailed physics behind the surface
to atmosphere energy transfer. In this case, the thermal inertia is provided by the heat capacity
of the mixed layer ocean.

In either case, one can compute OLR(T ) using a radiation model and some assumption
linking the temperature and humidity profile to surface temperature, or one can use one of the
linear or polynomial fits to the OLR curve discussed in Section 4. For example, with a linear fit
to the OLR curve for a terrestrial atmosphere with 300ppmv CO2 and 50% relative humidity, b
is about 2(W/m2)/K in the range 250K to 310K. The corresponding relaxation time τ is 1200
days for a 50 meter mixed layer, or 60 days for the 2.4m mixed layer which is equivalent to the
thermal inertia of the Earth’s atmosphere. In consequence, the seasonal cycle is expected to be
strongly attenuated on the ocean- covered parts of the Earth (apart from coastal effects). The
atmosphere alone does not have enough thermal inertia to damp out the seasonal cycle, but it
does have enough thermal inertia to keep the atmospheric temperature roughly constant in the
course of the diurnal cycle. Colder temperatures tend to make the relaxation time longer. For
example, in an Earthlike atmosphere with 300ppm CO2, the relaxation time roughly doubles at
160K. As noted earlier, Titan has a very long relaxation time owing to its thick atmosphere and
low temperature; now we can make the statement more precise. Ignoring the greenhouse effect and
setting b = 4σT 3, T = 90K we find a relaxation time of 20 Earth years, based on the equivalent
24m mixed layer depth of Titan’s atmosphere. Since Titan’s year (which is the same as Saturn’s
year) is about 30 Earth years, the seasonal cycle on Titan is expected to be considerably damped,
though not so much so as the seasonal cycle over the Earth’s oceans. The weak greenhouse effect
from methane in Titan’s atmosphere would somewhat enhance the damping. In contrast, a similar
calculation for the thin atmosphere of present Mars gives a relaxation time of only .8 Earth days,
based on T = 200K. Since a Mars day is approximately the same as an Earth day, the thermal
inertia of the Martian atmosphere at present has relatively little damping effect on the diurnal
cycle.

The thermal relaxation process is different if the time scale under consideration is short
compared to the response time of the atmosphere, but long compared to the response time of
the surface. In this case, the atmospheric temperature remains approximately constant while the
surface temperature fluctuates. This is the way the diurnal cycle works on Earth over ice or land.
The relaxation time of surface temperature is then determined using the turbulent and radiative
surface-atmosphere flux formulae discussed in Chapter 6, rather than the OLR. The situation of
present Mars is not like this, since the atmosphere has little thermal inertia. There, the diurnal
cycle affects the entire depth of the atmosphere, and the diurnal response is approximately governed
by the OLR and the thermal inertia of the surface, much as for the Earth’s seasonal cycle.

In the general case, where neither the atmosphere nor the ocean are in equilibrium, one
must write a separate mixed layer model for each of these two components, coupling them through
the surface exchange flux formulae, and allowing the atmosphere to lose energy through it’s top
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via OLR. The exploration of this case will be left to the reader.

8.3.2 Thermal inertia of a solid surface

Heat diffuses slowly through a non-metallic solid, so when the underlying surface is solid it is
typically necessary to consider the continous distribution of temperature as a function of depth
within the solid. To a good approximation, heat flux within a solid is proportional to the temper-
ature gradient; the proportionality constant is called the thermal conductivity, which we shall call
κT . Balancing the rate of change of heat content against the convergence of heat flux yields the
diffusion equation

∂tρcpT = ∂zκT ∂zT (8.20)

In this equation it is assumed that there are no internal heat sources. The surface heat budget
enters the problem through the boundary condition at the surface (z = 0), which states that the
diffusive heat flux into the surface equals the net heating of the surface by insolation and radiative
and turbulent heat transfers. Using the same notation as we employed for the mixed layer case,
this boundary condition reads

κT ∂zT |z=0 = S(t)− F (T ) (8.21)

When S is a constant So, the problem is solved with a constant temperature To satisfying So =
F (To), just as for the mixed layer case. Linearizing the boundary condition about To and substi-
tuting the complex exponential form for S′ yields

κT ∂zT
′|z=0 = S1e

−iωt − bT ′ (8.22)

If ρcp is constant, this boundary condition can be satisfied by a solution of the diffusion equation
of the form

T ′ = Aei(kz−ωt), k =
√

ω

D

1− i√
2

(8.23)

where A is a constant and D is the diffusivity κT /(ρcp). The complex vertical wavenumber k has
been determined by substitution of the exponential form of T ′ into the diffusion equation. A will
be determined by substitution of the solution into the boundary condition, but before doing so it
is worth pausing to make some remarks on the solution Eq. 8.23. This solution was first obtained
by Fourier, in his study of diurnal and seasonal variations of temperatures in the interior of the
Earth. Eq. 8.23 shows that the characteristic depth to which temperature fluctuations penetrate is√

(D/ω). Low frequency fluctuations penetrate to a greater depth than high frequency fluctuations,
because heat has a longer time to diffuse before the surface temperature reverses. Note also that
the phase lag of the time of maximum temperature with depth also reflects the time required for
the surface conditions to penetrate to the interior. For the diffusivity of water ice (Table 8.1) the
characteristic depth is 12 cm for the diurnal period, 2.4m for the annual period, 24m for a century
and 76m for a millennium. Solid rock yields similar numbers. Hence, the temperature profile within
ice or rock still contains information about temperatures centuries or even millennia in the past,
albeit in a rather smoothed and degraded form. This fact has been exploited in reconstructions of
past temperatures.

Exercise 8.3.3 You are designing a lunar colony to be placed at a Lunar latitude where the sun
is directly overhead at noon. The moon has an albedo close to zero, and the response time of the
surface is rapid, so that the noontime surface temperature is close to the instantaneous equilibrium
temperature of 394K (re-derive this temperature yourself). At night, the equilibrium temperature
would be absolute zero, but there is not enough time to reach equilibrium; still the night-time
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ρcp(J/m3) Conductivity (Wm−1K−1) Diffusivity (m2/s)
Water Ice 1.93 ·106 2.24 1.16 ·10−6

Fresh Snow .21 ·106 .08 .38 ·10−6

Old Snow 1.0 ·106 .42 .05 ·10−6

Sandy Soil 1.28 ·106 .3 .24 ·10−6

Clay Soil 1.42 ·106 .25 .18 ·10−6

Peat Soil .575 ·106 .06 .1 ·10−6

Rock 2.02 ·106 2.9 1.43 ·10−6

Lunar Regolith 1 ·106 .01 .01 ·10−6

Table 8.1: Thermal properties of some common surface materials

temperature plummets to 100K. Since the Moon is tide-locked to the Earth, the Lunar day is 28
Earth days. The diffusivity of the Lunar regolith (”soil”) is about 10−8m2/s.

Approximate the day-night temperature variation by a sinusoidal curve. What would be the
constant temperature far below the surface (neglecting internal heat sources)? How deeply would
the colony habitat have to be buried in order for the ambient diurnal temperature fluctuations to
be less than 1K?

NB: Given the low diffusivity of the regolith, your main difficulty is likely to be getting rid
of the heat generated by energy use (biological and otherwise) within the colony.

Now we substitute Eq. 8.23 into the boundary condition (8.22). The result is

A =
S1

b + ρcp

√
ωD 1+i√

2

=
S1

b

1
1 +

√
ωτD

1+i√
2

=
S1

ρcp

√
D/ω

1
1
τ1

+ 1+i√
2
ω

(8.24)

where τD = (ρcp)2D/b2 and τ1 = ρcp

√
D/ω/b. Upon comparison of the third line of this equation

with the solution for the mixed layer model, it is seen that the solid case acts somewhat like a mixed
layer model with frequency dependent layer depth

√
D/ω. For low frequency forcing, ωτD � 1,

the surface temperature follows the instantaneous equilibrium, A = S1/b, just as for the mixed
layer case. For high frequency forcing, the amplitude of the surface temperature fluctuation decays
like 1/

√
(ω). This is slower than was the case for the fixed-depth mixed layer, since the layer

determining the thermal inertia now gets thinner as frequency is increased. Note also that the
phase lag of surface temperature relative to insolation differs from the mixed layer case. For the
diffusion equation, the surface temperature lags the insolation by π/4 radians in the high frequency
limit rather than π/2. The thinning of the active thermal layer keeps the surface temperature closer
to instantaneous equilibrium than it would be in the fixed-depth case.

Apart from some exceptional circumstances, the thermal inertia of a solid surface has little
effect on the seasonal cycle, though it can substantially moderate the diurnal cycle. This can
be seen easily through the evaluation of tauD in a few typical cases. First we consider the case
of Antarctic or Arctic ice-covered regions. The flux coefficient based on a linear OLR fit in the
temperature range 240K to 270K is b = 2.16W/(m2K). Using the heat capacity and thermal
diffusivity for water ice, given in Table 8.1, we find tauD = 11Earthdays. At latitudes somewhat
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away from the poles, the diurnal cycle of insolation becomes significant, particularly during the
equinoxes. Since the time scale for the surface is shorter than that for the atmosphere, it would
be more appropriate to use surface flux coefficients than OLR in analyzing the terrestrial diurnal
cycle. As noted in Chapter 6, the turbulent heat transfer is strongly inhibited at night-time,
when the boundary layer is statically stable. In this case, the flux coefficient is dominated by the
radiative term 4σT 3 based on surface temperature. For temperatures around 255K this yields an
even shorter response time τ = 4Earthdays. In the midlatitudes and Tropics, the estimate differs
only in the use of the slightly larger values of b appropriate to the warmer temperatures, and the
somewhat different thermal properties of rock or soil, but the result remains that τD is on the
order of a few days or less. For Mars, one may use b = 4σT 3 based on T = 200K, given the thin
atmosphere. This yields tauD = 15Earthdays, which is still not sufficient to appreciably affect the
seasonal cycle. It is only at the extremely cold temperatures of Titan that the response time of a
solid ice surface becomes significantly longer (roughly 1300 Earth days), but even there the effect
is of little interest, owing to the much longer response time of Titan’s atmosphere. In sum, a solid
surface can generally be considered to be in equilibrium for the purpose of computing temperature
fluctuations on the seasonal time scale.

It should not be concluded from the above estimates that the thermal inertia of solid surfaces
is sufficient to eliminate the diurnal cycle. The variation of insolation between noon and night-
time is huge; On Earth, at a latitude where the Sun is overhead at noon, the amplitude of the
variation is 1370W/m2, which leads to an undamped temperature fluctuation of 685K based on a
flux coefficient b = 2W/(m2K). Even damped by a factor of 20, this amounts to a very considerable
diurnal fluctuation. Similar considerations apply to the Martian diurnal cycle.

As a complement to the periodically forced solution, Figures 8.8 and 8.9 show the solutions
for the diffusion equation in water ice which is initialized at a uniform temperature of 300K and
allowed to cool without solar heating subject to a flux upper boundary condition. The heat loss
from the surface was computed using an Earthlike OLR fit OLR(Ts) = 48.461+1.5866(Ts−180)+
.0029663(Ts−180)2 A quadratic fit was used so that the the fit would remain accurate over a large
temperature range. Except for the high initial temperature, which turns out to be inconsequential,
this problem can be thought of as representing the cooling of the Antarctic ice cap after permanent
winter night closes in. Figure 8.8 illustrates the progressive penetration of the surface cooling into
the depth of the ice; at time t, the cooling has penetrated to a depth on the order of

√
Dt, where

D is the thermal diffusivity of the ice. Figure 8.9 shows that there is an extremely rapid initial
cooling, owing to the thin layer of ice affected at short times. After a half day, the temperature has
already fallen below freezing. Therafter, the temperature drop becomes slower, as the depth of the
ice layer involved becomes greater. The reduction in OLR as temperature drop also contributes to
the reduction in cooling rate. Nonetheless, after two months, the temperature has fallen to 190K,
which is well below the 235K minimum temperature observed at the South Pole. Incorporation of
the atmosphere’s thermal inertia reduces the cooling rate somewhat, but does much increase the
extremely cold temperature encountered at the end of the winter. Clearly, the Antarctic interior
relies on heat transport from warmer latitudes to limit its winter temperature drop.

We conclude this section with a few remarks on the special effects of snow and ice (whether
from water, CO2 or some other substance) on the seasonal and diurnal cycle. Snow has a profound
effect on the diurnal cycle, because of its very low thermal conductivity, which is nearly an order
of magnitude lower than that of ice (see Table 8.1 for the case of water snow). The low thermal
conductivity arises from the high proportion of the snow’s volume which consists of air trapped
in pores which are too small to allow the air to flow; since air itself has extremely low thermal
conductivity, heat must primarily make its way through the contorted pathways of snow crystals
in contact with each other. Other gases, trapped in snows made of other substance, have a
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Figure 8.8: Temperature vs. depth at various times, for an ice layer subject to temperature-
dependent heat loss at the surface. See text for specification of the heat loss rate.
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similar effect. The low conductivity dramatically reduces the characteristic response time of the
surface, even for a snow layer of modest thickness. In the Antarctic case discussed above, τD drops
to a mere 60 minutes for old snow, and 20 minutes for fresh snow. At night, the temperature
of the snow surface plunges almost instantaneously to its equilibrium value. In the case of the
Earth, the atmosphere has sufficient thermal inertia that it doesn’t cool much at night, above the
boundary layer. Given the suppression of turbulent flux in the stable nocturnal boundary layer,
the night-time equilibrium temperature is maintained mainly by the downwelling infrared flux
from the atmosphere, as discussed in Chapter 6. When the low level air temperature is 255K, the
downwelling infrared flux is about 120W/m2, maintaining a snow surface temperature of 214K.
On present Mars, the atmosphere cools down markedly at night, and in any event is too thin to
provide much downwelling flux, so it is less obvious what limits the night-time temperature drop
over the CO2 snow fields that form in the winter hemisphere. One relevant consideration is that
the flux coefficient b drops dramatically at very cold temperatures, leading to an increase of the
relaxation time; when the surface temperature falls to 150K, τD increases to 23 hours even over
snow. However, at such low temperatures the saturation vapor pressure of CO2 is only 1.26mb, well
below the ambient surface pressure. Hence, the night-time temperature minimum is likely to be
governed by the latent heat release due to CO2 condensation, which sets in at surface temperatures
near 160K.

Snow cover on any planet can change rapidly in the course of the seasons, and on Earth, sea
ice cover similarly expands and retreats. Since snow and ice have higher albedo than the surfaces
they generally cover, this has an important feedback effect on the seasonal cycle. It enhances the
winter-time cooling once ice or snow begin to accumulate, delays the springtime warming, but
then accelerates the warming once ice or snow begin to retreat. The albedo feedback of snow is
especially pronounced, since snow has a much higher albedo than ice. For water snow, for example,
the albedo of fresh snow averaged over the solar spectrum can exceed .85, whereas a typical albedo
for sea ice is on the order of .6. The high albedo of snow, like its low diffusivity, arises from its
highly porous nature which offers many opportunities for light to encounter discontinuities in index
of refraction, leading to scattering. It is a generic property of the snow of any weakly-absorbing
substance. Note that the concept of ”sea ice” is peculiar to planets with water oceans. On a planet
with a liquid methane or CO2 ocean ”sea ice” would sink, and not have any chance to affect the
surface albedo until the ocean were frozen to the bottom.

The presence of a solid phase on the surface of the planet also introduces a new form of
thermal inertia, associated with the latent heat of phase change from the solid to liquid form. Where
there is ice, whether it be in the form of sea ice or land glaciers, the surface temperature cannot
rise above the triple point (the ”melting point”) until all the ice has been melted. The phenomenon
is familiar from an experiment commonly performed in elementary school science classes, in which
one tries to boil a pot of water containing ice cubes,and finds that the temperature doesn’t start to
rise above freezing until all the ice is gone. As an example, let us consider the melting of a 5m thick
layer of ice with an albedo of .7. Based on the latent heat of melting, it takes 1.5 · 109 Joules to
melt a square meter of this ice layer. In summertime at the pole, the ice absorbs 160W/m2 which
would then take 110 days to melt the ice layer, even if all the absorbed solar energy is retained
for melting, and none is lost by radiation to the atmosphere. Thus, a modest layer of ice can
persist throughout a warm season, keeping the temperature from rising. One can clearly see this
principle in operation in the summertime polar temperatures of the Earth, but it also operates in
midlatitude areas subject to seasonal snow cover, in effect delaying the end of winter. The case of
sublimation is somewhat similar, though subtler since there is no threshold temperature and the
sublimated gas enters the atmosphere (with its stored energy), rather than flowing away in the
form of rivers or ocean currents, as is the case for the liquid produced by melting. As discussed in
Chapter 6, the latent heat flux due to sublimation (like evaporation) greatly increases the surface
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energy loss for any given temperature. This reduces the warming of the surface required to balance
the summertime increase in absorbed solar radiation. Unlike melting, it does not generally cap the
surface temperature at some fixed value, but it does reduce the warming below what it would be
without the presence of the sublimating ice or snow.

8.3.3 Summary of thermal inertia effects

The preceding discussion has revealed two limiting forms of behavior a planet can exhibit in the
course of its seasonal cycle. A ”waterworld,” having high thermal inertia in the ocean-atmosphere
system, responds primarily to the annual average insolation. Such a world will be coldest at
the poles and warmest at the equator, unless the obliquity exceeds about 54o, in which case the
warmest climates will be found near the two poles. A ”desertworld,” having little thermal inertia
in either the surface or the atmosphere, responds to the instantaneous insolation at each time of
the year. The location of the highest temperature moves from some latitude North of the equator
to the same latituded South of the equator, and back again, in the course of the year. For small
obliquity, the poles are frigid throughout the year, and the hot spot executes modest excursions
about the equator. For obliquities greater than about 18o, the excursion goes all the way from
pole to pole, assuming a uniform albedo. Geographical and temporal albedo variations alter this
picture. Formation of permanent ice or snow cover near the poles will tend to keep the polar regions
cold throughout the year; this effect is assisted by the thermal inertia implied by the latent heat
required to melt or sublimate ice, which limits the summertime temperature increase. The Earth
shows some characteristics of both limiting cases, with extreme continental climates and equable
maritime climates. Thermal inertia sufficient to moderate the seasonal cycle can be provided either
by a thick atmosphere or a well mixed liquid layer at the surface, which need only have a depth of
some tens of meters. Heat storage provided by non-melting solid surfaces is almost never sufficient
to have a significant affect on the seasonal cycle, though it can substantially moderate the diurnal
cycle for planets with rotation periods on the order of a few Earth days or less.

8.4 Some elementary orbital mechanics

Sir Isaac Newton showed that the orbit of a single planet revolving about its star takes the form of
an ellipse, with a focus of the ellipse at the center of mass of the system. Since stars are typically
much more massive than their planets, the center of mass for most purposes is identical to the
center of the star. The elliptical nature of orbits has an important effect on the seasonal cycle,
since the planet is farther from its sun at some parts of the year than it is at others. This makes
the solar ”constant” L a function of time of year. On Earth, we don’t notice this effect too much
because our orbit is nearly circular. Nonetheless, the effect has an important influence on the
long-term evolution of climate. On other planets, it can be even more important.

The distance of closest aproach of a planet to its star is called the perihelion, which we shall
call rp. The greatest distance is called the aphelion, which we shall call rap, The semi-major axis
is then a = (rp + rap)/2. Let κ1 be the angle made by the line between the star and the planet,
defined so that κ1 = 0 at the perihelion. Then, in polar coordinates, the equation of the elliptical
orbit is

r = a
1− e2

1 + e cos(κ1)
(8.25)

where e is the eccentricity of the orbit, which lies in the interval [0, 1]. e = 0 yields a circular orbit,
while the ellipse becomes progressively more elongated as e → 1. Specifically, perihelion is (1−e)a,
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Figure 8.10: Geometry of an elliptical orbit with eccentricity e = .66

the aphelion is (1 + e)a and the ratio of the distance at aphelion to the distance at perihelion is
(1 + e)/(1− e). To get the semi-minor axis, we maximize r(κ1)sin(κ1), yielding a

√
1− e2. Hence,

the ratio of the minor to major axis is
√

1− e2. The geometry of the orbit is summarized in Figure
8.10.

Exercise 8.4.1 What eccentricity would yield an ellipse with a 3:1 axis ratio? Sketch such an
ellipse, indicating the correct location of the Sun relative to the orbit.

The variation of the solar constant is then given by

L =
1
4π

Io

r2
(8.26)

where Io is the power output of the star (e.g about 3.8x1026 Watts for the Sun at present). The
annual variation in distance from the Sun leads to ”distance seasons,” which are synchronous
between the hemispheres. This contrasts with the ”obliquity seasons” (dominant for Earth and
Mars) which are out of phase between the hemispheres, one hemisphere enjoying winter while the
other suffers under the torrid heat of summer. In the limit of small eccentricity, the ratio of solar
constant at aphelion to that at perihelion is 1 + 4e. This represents a very considerable variation,
even for modest eccentricity. For the present eccentricity of the Earth (.017), it amounts to 6.8%,
or 93W/m2 difference in the solar constant between perihelion and aphelion. To turn this flux into
a crude temperature estimate, we divide 4 to account for the averaging over the Earth’s surface,
and apply a typical terrestrial OLR(T ) slope of 2W/(m2K), yielding a temperature difference of
more than 11K between perihelion and aphelion. This represents the amplitude of the distance
seasons. For Mars, with its present eccentricity of .093, the effect is even greater. The perihelion
to aphelion flux variation is 37%, or 219W/m2. For Martian conditions, where the atmosphere has
a weak greenhouse effect, this translates into an amplitude of 30K.

To determine the time dependence of r, we must know κ1(t). Because the orbit is no
longer circular, the angular velocity is no longer constant; the planet moves faster when is close
to the sun than when it is farther away. There is no analytic expression for the time variation
of the orbital position. However, it can be easily computed by numerically solving a first order
differential equation, which can be derived either from Kepler’s equal-area law, or directly from
angular momentum conservation. We shall take the latter route. Let v⊥ be the component of
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velocity perpendicular to the line joining the planet to its star. Then, by conservation of angular
momemtum, rv⊥ = J is independant of time. However, the angular velocity of the orbit is simply
v⊥/r, so the angle satisfies the equation

dκ1

dt
=

J

r2
=

J

a2

(1 + e cos(κ1))2

(1− e2)2
(8.27)

This equation shows that the angular velocity of the planet speeds up as it approaches perihelion,
and slows down as it approaches aphelion. In consequence, the planet spends less time near the
sun than it does at greater distances, and ”distance summer” is shorter than ”distance winter.”

The average of the solar constant over the course of the year can be written

< L >=
1
4π

Io

a2
<

a2

r2
>= La <

a2

r2
> (8.28)

where angle brackets denote the average over the planet’s year and La is the solar constant eval-
uated at a distance equal to the semi-major axis of the orbit. We can take advantage of the fact
that the same 1/r2 factor appears in Eqn. 8.27 to relate the mean solar constant to the nondi-
mensionalized duration of the planet’s year. Specifically, integrating Eqn. 8.27 over one year and
dividing by the length of the year yields

< L >=
1
τ∗y

La (8.29)

where τ∗y = τy/(2πa2/J), τy being the length of the year in dimensional terms. The quantity
2πa2/J is the length of year for a circular orbit with radius a. Numerical integration of Eqn.
8.27 shows that the nondimensional year defined in this way decreases as the orbit becomes more
eccentric. For e = .1, τ∗y is .995, for e = .25, τ∗y is .968, and e = .5, τ∗y is .866.

Most planets have nearly circular orbits; leaving out Mercury and Pluto, the other planets
have current eccentricities ranging from .007 to .093. Even Pluto, the most eccentric planet, only
has a value of .244. Note that the difference between perihelion and aphelion distance is O(e),
whereas the ratio of major to minor axes deviates from unity by only O(e2). Hence, for small e,
the orbit still looks like a circle, but with the Sun displaced from the circle’s center by O(e). For
small e, Eqn. 8.27 can be solved approximately by a straightforward expansion in e. Substituting

κ1(t) =
J

a2
[t + eF (t) + e2G(t)] (8.30)

into the equation and matching like terms in e yields the solution

κ1 = 2πt∗ + 2e cos 2πt∗ + e2[πt∗ +
5π

2
sin 4πt∗] + O(e3) (8.31)

where t∗ = tJ/(2πa2). The first order term causes an O(e) variation in the orbital angular velocity
over the course of the year, but it this term by itself does not alter the length of the year. Taking
into account the second order term, it may be inferred that the nondimensional length of the year
is approximately τ∗y = 1− e2/2. In consequence, the annual mean insolation varies very little from
what it would be for a circular orbit with radius equal to the semi-major axis. For e = .1, close
to the present value for Mars, the eccentricity increases mean insolation by only .5%. For e = .02,
similar to Earth at present, the increase is a meager .02%, or .274W/m2. Except in very unusual
cases, orbital eccentricity affects the climate through the intermediary of the seasonal cycle, and
not through any effect on the annual mean radiation budget.
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The consequences of orbital eccentricity for a planet’s climate derive from the way the
distance seasons interact with the tilt seasons. Each of these types of seasons has a period of
one planetary year, so the nature of the interaction is governed by the position in the orbit at
which the Northern Hemisphere summer solstice occurs, measured relative to the position of the
perihelion. This can be measured by an angle, called the precession angle or precession phase.
We will define the phase such that when it is zero, the Northern Hemisphere solstice occurs at
the perihelion. It is also common to define the phase as the angle between the perihelion and the
Northern Hemisphere spring (”vernal”) equinox. When the precession angle is zero, the distance
seasons make the Northern Hemisphere seasonal cycle stronger, since ”Northern tilt summer”
happens when the planet is closest to the Sun and ””Northern tilt winter” happens when the
planet is farthers from the Sun. Conversely, the Southern Hemisphere seasonal cycle is attenuated
when the precession angle is zero. When the precession angle is 180o, the situation is reversed
between the hemispheres, with the Southern Hemisphere getting very hot summers and very cold
winters, and the Northern Hemisphere experiencing more moderate seasons. When the precession
angle is 90o or 270o, the solstices conditions are no longer modulated by the distance seasons, but
instead the vernal equinox becomes warmer than the autumnal equinox, or vice versa.

Figure 8.11 illustrates the effect of eccentricity and precession on the seasonal cycle of
insolation. These results were computed by numerically solving Eq. 8.27, and substituting κ1(t)
into the flux distribution function given by Eq 8.10 and Eq 8.9, after shifting its phase to account
for the precession angle. Given κ1(t), we also know r(t). Using this, we multiply the flux factor by
(a/r(t))2 to account for the variations in orbital distance. This is the quantity plotted, at selected
latitudes, in Figure 8.11. One multiplies this flux factor by the solar constant at a distance equal
to the semi-major axis, in order to obtain the actual insolation in W/m2. Using the symmetries
of Eqn. 8.9, the results for precession angles of 180o and 270o can be obtained from those shown
in Figure 8.11 by simply shifting the curves shown by a half year, and interchanging the two
hemispheres, so these cases do not require separate discussion.

For both eccentricities, we see that the Northern Hemisphere extratropical seasonal cycle
is made more extreme when the precession angle is 0o, while that in the Southern Hemisphere is
moderated. At the Equator, the two equinoxes have identical insolation, but the time of maximum
equatorial insolation is shifted towards the Northern summer solstice, which is also the time of
perihelion in this case. For the larger, Marslike, eccentricity (e = .1), the maximum equatorial
insolation in fact occurs at the solstice. For the case of 90o obliquity, the extratropical seasonal
cycle has identical strength in both hemispheres, but the equinox conditions now differ from each
other, the Autumnal equinox receiving less insolation than the Vernal (Spring) equinox. Also, the
time of maximum and minimum extratropical insolation is also significantly displaced from what
it would be for a circular orbit. The effect of orbital velocity variations on the seasonal cycle is just
barely visible for the lower, Earthlike, eccentricity, but it is prominent for the higher eccentricity
case. For 0o precession, Summer is longer than Winter in the Southern hemisphere, while Winter is
longer than Summer in the Northern hemisphere; for 90o precession, there is a marked asymmetry
between the rate of increase of insolation going into each season, and the rate of decrease coming
out of it. For example, in the Northern Hemisphere, Summer sets in rapidly, but the transition to
Winter takes a long time. In fact the Northern hemisphere, Southern hemisphere and equatorial
insolation maxima are all bunched up within a period of about a quarter of a year, indicating that
the distance seasons are beginning to dominate the tilt seasons even at this modest eccentricity.
The effect of precession phase on the annual average insolation at each latitude is insignificant;
for both the high and low eccentricity cases shown in Figure 8.11, changing the precession phase
leaves the annual mean flux factor unchanged to at least four decimal places.

Note that the precession angle has a big effect on climate when the eccentricity is large, but
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Figure 8.11: The seasonal cycle of solar flux factor for a planet with 20o obliquity, at the Equator,
45N and 45S. To obtain the insolation at any given time of year, this flux factor is multiplied by
the solar constant at the time of perihelion. Results are shown for an Earthlike eccentricity of
.02 (top row), and a Marslike eccentricity of .1 (bottom row). The left column gives results for
a precessional phase of zero degrees, while the right gives results for 90 degrees, both measured
relative to the Northern Hemisphere summer solstice.
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has no effect when the eccentricity is zero. The effects of precession angle and orbital eccentricity
work in conjunction with each other, and cannot be disentangled.

At present, Earth’s precession angle is close to 180o, so that the Southern hemisphere is
driven towards hotter summers and colder winters, while the Northern hemisphere is driven towards
a weaker seasonal cycle. This pattern is not manifest in the observations (Figure 8.1) because the
Northern Hemisphere has more land than the Southern Hemisphere, giving it a stronger seasonal
cycle, owing to its lower thermal inertia. Relatively speaking, though, the Northern Hemisphere
seasonal cycle is weaker than it would be if the precession angle were 90o or 0o. Coincidentally, the
precession angle of Mars is also about 180o at present, so that the Southern Hemisphere Martian
winters are expected to be considerably colder than those in the North. Evidence that this indeed
occurs, and its broader implications for Martian climate, will be taken up in Section 8.6.

The precession angles and orbital eccentricities of Earth and Mars have been different in the
past, and will be different in the future. This has some extremely important implications for the
evolution of climate, to which we now turn our attention.

8.5 Effect of long term variation of orbital parameters

The three orbital parameters that govern the seasonal and geographical distribution of insolation
are the precession angle, obliquity, and eccentricity. All three change gradually on a scale of many
thousands of years, owing basic laws of mechanics which apply to any planet in any solar system.

The evolution of the precession angle derives from a fairly elementary property of the me-
chanics of rigid-body rotation. The rotation axis of a rotating body subject to a net torque executes
a rotation at constant rate about a second axis whose orientation is determined by the torque. The
precession rate is determined by the magnitude of the torque and the angular momentum of the
rotating body. The phenomenon of precession can be easily observed on a tabletop, by setting
down a toy gyroscope with its axis inclined from the vertical. The top will precess, because there
is a torque caused by the Earth’s gravity and the force of the tabletop pushing up on the point of
the top. For planets, the torque instead is provided by the slight deviations of the mass distribution
from spherical symmetry. The equatorial bulge caused by rotation is a major player, but other
asymmetries, including those due to the distribution of ice, and of major geographic features, are
also of consequence.

Obliquity variations also stem from the basic properties of rigid-body rotation, but these
variations arise from fluctuations in the torque on the planet, rather than the mean torque. The
obliquity cycle is inextricably linked with the precessional cycle, which modulates the orientation
of the aspherical planet with respect to the non-uniform gravitational field caused by the Sun, the
planet’s moon(s) (if sufficiently massive), and all the other planets.

Eccentricity evolves because the periodic elliptical orbit is a solution only of the two-body
problem, consisting of a planet and its star in isolation. Although the gravity of the Sun greatly
dominates that of the other planets in our Solar System (and most likely in other planetary systems
as well) the relatively small tugs of the planets on each other causes eccentricity to change gradually.
Early in the history of this subject, it was shown by Laplace and Lagrange that the semi-major
axis remains very nearly constant in the course of such eccentricity changes. The results of the
preceding section therefore imply that eccentricity cycles have only a weak effect on annual mean
insolation, since the mean insolation changes little if the semi-major axis is held fixed, except for
extremely non-circular orbits.
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Tiny deviations of the stellar gravity field from the ideal 1/r2 law add up to significant
effects on obliquity and eccentricity over sufficiently long periods of time. The fact that the Sun is
not perfectly spherical enters the problem, and even general relativistic deviations from Newtonian
gravity have major effects.

Eccentricity modulates the distance seasons, and precession determines whether they con-
structively or destructively interfere with the tilt seasons. Meanwhile, obliquity variations modu-
late the strength of the tilt seasons. The net result is a rich variety of rhythms and patterns in
insolation, which may lead to dramatic cycles in the state of a planet’s climate.

8.5.1 Milankovic cycles on Earth

Earth’s precessional cycle is shown in Figure 8.12. The precession angle increases at a nearly
constant rate, completing a cycle every 22,000 years. Though the variation in rate is not evident
over any one cycle, the rate is not exactly constant, and therefore the phase drifts over the course
of hundreds of thousands of years.

The precessional cycle is very rapid, and the precession angle has changed markedly even
over historical times. Eight thousand years ago, when the first Sumerians poured into the valleys
of the Tigris and Euphrates, the star we now call Polaris (the ”Pole Star”, in the tail of the Little
Bear) was about 40o of arc away from the star that the the North Polar axis then pointed to,and
about which the constellations rotated at the time. The consequences of precession for change in
seasonality are potentially highly consequential. In Figure 8.12, the July insolation at 65N is shown
as a general indication of the magnitude of the seasonality effect; high northern July insolation in
the precessional cycle goes with low January northern insolation, weak southern January (summer)
insolation, and relatively strong southern July (winter) insolation. Ten thousand years ago, the
Northern Hemisphere summer insolation was fully 40W/m2 greater than at present, and so the
northern summers should have been considerably warmer than today, while the northern winters
should have been considerably colder. The effect should show up especially over land, which is
dark enough to absorb most of the solar radiation and has low enough thermal inertia to respond
nearly instantaneously to seasonal changes. The climate system in its full glory is nonlinear and
complex, so the response of climate to this change in seasonality could show up in any number of
unexpected ways, and not simply as an enhancement of the Northern Hemisphere seasonal cycle
over land.

The event which is most likely to be a recent manifestation of the precessional cycle is
the ”Climatic Optimum,” covering the period of about 5000 to 7000 years ago (see Chapter 1).
The term is most often used to refer to a period of generally warmer Eurasian temperatures. The
”optimum” is sometimes said to be about 1-2K warmer than present, but it is difficult to get reliable
estimates of global mean temperatures, or even annual means. What is certain is that some regions
during some seasons were warmer than they were at recent pre-industrial times. At about the same
time, the Sahara, which is now a torrid desert, experienced a period of greening, with currently
dry riverbeds (”wadis”) filled with water, and a teeming variety of animal life and flora not known
at present. The greening of the Sahara is thought to be associated with atmospheric circulation
systems known as ”monsoons,” forced to a greater extent by the enhanced heating of Northern
Hemisphere subtropical land. A central question, though, is why the greening of the Sahara, and
the Climatic Optimum occurred several thousand years after the precessional peak in Northern
Hemisphere insolation. There are some indications that the warming may have begun as much as
10,000 years ago, but the question of the physics accounting for the time delay in response remains
unsettled. Candidates for the necessary inertia in climate response include vegetation adaptation,
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Figure 8.12: Evolution of precession angle relative to the Northern Hemisphere Summer Solstice,
and the associated July insolation at 65N. Data taken from Berger and Loutre (1991).

land ice, and deep ocean heat storage.

Looking further back in time, the obliquity and eccentricity variations become significant,
though of course, the precession cycle also continues to have a large effect. The Earth’s obliq-
uity and eccentricity cycle is shown in Figure 8.13. The amplitude of the obliquity cycle varies
considerably over time, but it’s dominant period is on the order of 40,000 years. The Earth’s
obliquity varies narrowly in a range from about 22o to 24.5o. At present, the Earth is in the
middle of its obliquity range. Eccentricity varies on a longer time scale of approximately 100,000
years. However, in Figure 8.13 there are also hints of 400,000 year cycle of eccentricity, whose
fingerprint consists of two high eccentricity cycles followed by two low eccentricity cycles. This
visual impression is borne out by spectral analysis. Currently, the Earth is near the low end of its
eccentricity range, though it has gotten quite close to zero during the past two million years. At
the other extreme, Earth’s eccentricity has gotten as high as .055, or more than half that of Mars.

The idea that ice ages are due to changes in Earth’s orbital parameters is nearly as old as the
discovery of ice ages themselves. The idea has gained currency, but it is nearly as hard to justify
today on basic physical principles as it was when first proposed. The main reason for its acceptance
is circumstantial, in that increasingly detailed data on the observed rhythm of the ice ages shows
the unmistakable imprint of the calculated rhythm of the orbital forcing. James Croll first proposed
in the 1870’s that changes in the Earth’s eccentricity led to ice ages, and his idea was refined a
half century later by Milutin Milankovic, whose name is now generally attached to the theory. The
centerpiece of Milankovic’s idea is that ice ages require the accumulation of snow on land, and that



334 CHAPTER 8. VARIATION OF TEMPERATURE WITH SEASON AND LATITUDE

22

22.5

23

23.5

24

24.5

25

-2000 -1500 -1000 -500 0

O
bl

iq
ui

ty
 (

de
gr

ee
s)

Thousands of years B.P.

0

0.01

0.02

0.03

0.04

0.05

0.06

-2000 -1500 -1000 -500 0

E
cc

en
tr

ic
ity

Thousands of years B.P.

Figure 8.13: Evolution of the Earth’s obliquity and eccentricity. Data taken from Berger and
Loutre (1991).
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this in turn is favored by mild summers (limiting melting of old snow and ice) and warmer, but still
sub-freezing, winters (favoring snow accumulation, since warmer air contains more water). The
gaping hole in Milankovic’s theory is that it predicts that ice ages should follow the precessional
cycle. In particular, the Northern Hemisphere and Southern Hemisphere should have ice ages in
alternation every 10,000 years, with the severity of the ice ages modulated by the eccentricity
cycle. This is not at all what is observed. Figure 8.14 shows the Antarctic temperature record
for the past 400,000 years, together with eccentricity and the July insolation at 65N. Numerous
other temperature proxies worldwide show that the Northern Hemisphere temperature, and global
glacier ice volume, is nearly in phase with the Antarctic temperature record, so that the Antarctic
temperature can be taken as an index of when the world is in an ice age. The dominant signal
in the climate response is an approximately 100,000 year spacing in the major interglacial warm
periods, and a similar spacing in the coldest glacial periods. Crudely speaking, each interglacial
corresponds to a peak in eccentricity, and a time within which (during parts of the precessional
cycle) the Northern Hemisphere seasonality is unusually strong. This is somewhat reminiscent of
the Milankovic mechanism, but what filters out the high frequency precessional cycle? Why does
the entire Earth fall into an ice age at the same time, rather than alternating between hemispheres?
A closer examination of the 65N July insolation strongly suggests that major global deglaciations
occur when the Northern Hemisphere seasonality is weak, suggesting that the Earth listens to the
Northern hemisphere forcing more than the Southern, in deciding when to have an ice age. This
probably has something to do with the fact that the Northern hemisphere has more land, and
hence more seasonality, than the Summer, but the precise way this asymmetry influences global
glaciation remains largely obscure.

The problem is not that the amplitude of radiative forcing associated with Milankovic cycles
is small: it amounts to an enormous 100W/m2, with the amplitude determined by the eccentricity
cycle. The problem is that the forcing occurs on the fast precessional time scale, whereas the
climate response is predominately on a much slower 100,000 year time scale. One does not so
much need an amplifier of Milankovic forcing, as a ”rectifier,” which is sensitive to the amplitude
of the precessional variation, rather than to its mean. Recall that atmospheric CO2 is observed
to vary on the glacial-interglacial time scale. Certainly, this is a major piece of the puzzle, since
the drop in CO2 during glacial times is sufficient to account for a major portion of the cooling
of the climate, particularly in the Southern Hemisphere (see Chapter 4). CO2 is a globalizing
effect, and (insofar as it is linked to the glacial-interglacial physical climate changes) an amplifying
feedback. The circumstantial role of CO2 in ice ages is also a reprise of an old idea. The 19th
century physicist Tyndall, whose work on infrared spectroscopy is at the foundations of our current
understanding of the greenhouse effect, was primarily interested in explaining the ice ages, and the
association reappeared later in the work of Chamberlain. The mechanism of the CO2 cycle not
known, but almost certainly involves CO2 storage in the deep ocean. The lack of a theory for the
glacial-interglacial CO2 cycle is the central impediment to a theory of the ice ages. The presence of
ice does seem to be a prerequisite for a strong climate response to orbital forcing. Before the onset
of permanent polar ice at the beginning of the Pleistocene, response to orbital forcing was weak
(see Chapter 1). Besides CO2, ocean circulations can potentially play a major role in globalizing
and rectifying the Northern Hemisphere signal, through direct heat transport as well as indirect
effects on CO2. The answer to the mystery of the ice ages lies somewhere in the space: ice,ocean,
CO2, but how the system works its miracles to yield a 100,000 year cycle is still unknown.
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Figure 8.14: Comparison of Antarctic temperature reconstructed from Vostok ice core deuterium
measurements, with the Earth’s eccentricity cycle. The bottom panel shows the corresponding
July insolation at 65N. Temperature is given as deviation from the mean modern value. Vostok
temperature data was taken from Peteet et al. (2001).
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8.5.2 Milankovic cycles on Mars

As expected from general mechanical considerations, Mars has Milankovic cycles analogous to
those of Earth. Mars’ cycles differ in some key respects, because of the lack of a massive moon,
and because of the proximity of Jupiter.

As for Earth, the precession angle of Mars increases at a nearly constant rate. However,
because Mars does not have a moon as massive as Earth’s, the precession is dominated by Solar
gravity, and is slower. The Mars precessional cycle has a period of approximately 50,000 Earth
years. The current precession phase is 145o, and will reach 180o in about 5000 years.

The obliquity and eccentricity variations are shown in Figure 8.15. Obliquity has short term
variations with amplitude on the order of 20o. The period is not visible in the figure, but a finer
scale examination of the data shows that the period is about 125,000 Earth years in recent times.
The amplitude is markedly larger than that of Earth’s obliquity cycle, but what is even more
remarkable is that the obliquity drifts to values as large as 47o over 10 million years. The extreme
obliquity variations are directly linked to the absence of Earth’s massive moon, which can be shown
to provide a considerable damping effect on obliquity. This raises the intriguing possibility that a
massive moon may be a necessary condition for a planet to avoid extreme climate fluctuations that
could compromise its habitability. Calculations of the Earth’s obliquity have also been carried out
for tens of millions of years, and do not yield any greater variations than have been encountered
in the past million years.

Mars is close to its maximum eccentricity at present, though it can get somewhat larger.
The eccentricity of Mars undergoes quasiperiodic large amplitude cycles with a period on the order
of 3 million years. In addition, there are short period, lower amplitude eccentricity variations with
a period on the order of 100,000 years, rather similar to Earth’s. In contrast, the very long period
variations are not found in Earth’s eccentricity.

Mars has no ocean, little thermal inertia, and a thin atmosphere that has a relatively modest
effect on the planet’s surface temperature. These features should lead to a different, and perhaps
simpler, response to orbital forcing on Mars as compared to Earth. The predicted climate changes
have been simulated in detail using comprehensive climate models, but we will confine ourselves
here to some general remarks. The main effect of Martian Milankovic cycles is likely to be the
redistribution of water deposits, in the form of either glaciers or permafrost. There are two aspects
to this redistribution. On the short precessional time scale, the asymmetry between the Northern
and Southern polar ice caps should reverse. For example, about 25000 years ago, the Southern
hemisphere should have had milder summers and winters, while the Northern had cold winters
and hot summers; the default reasoning would imply that at such times, the Southern ice cap
should be large and be composed mainly of water ice, whereas the Northern ice cap becomes
smaller and experiences massive seasonal CO2 snow deposition. On the time scale of millions of
years, the obliquity of Mars becomes much greater, leading potentially to a situation where water
my migrate from poles that are seasonally very hot, and re-deposit in the tropics. At times of
much lower obliquity, permafrost ice may migrate to both poles. The migration of water deposits
and changes in patterns of deposition of CO2 snow probably leaves some imprint on the surface
geology of Mars, and the growth and decay of glaciers certainly does. These offer some prospects
for reconstructing the consequences of Milankovic cycles on Mars. Even better information would
be obtained through analyzing cores of the polar ice caps, much as is done in Antarctica and
Greenland. It is a very exciting development that the technology for doing this robotically on
Mars is already under development. With respect to Mars, we are more or less at the stage of
Croll or Milankovic, who thought they found the key to Earth’s ice ages. Data showed they were
on the right track, but that the climate system is much more intricate than they imagined. Given
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Figure 8.15: Evolution of Mars’ obliquity and eccentricity. Data taken from Laskar et al. (2003).
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that we do not yet have a satisfactory theory leading from orbital variations to climate response
on Earth, one can look forward to many surprises, once data on the Martian climate response
becomes available.

8.6 A palette of planetary seasonal cycles

In this section we apply the preceding ideas to a range of planets (including Earth under very
different past climate regimes), to see how they play out. This section is still under development.
The following provides an outline of topics to be covered. Each topic will be supplemented so far
as possible by observations or (when observations are unavailable) GCM simulations, illustrating
the behavior inferred from the basic reasoning.

8.6.1 Airless planets and moons

This includes a discussion of Earth’s moon, as well as nearly airless exotic cases like Triton. Pluto
is an interesting case, because of its high eccentricity; like Triton, it should have a seasonal nitrogen
”micro-atmosphere.”

8.6.2 Venus

Slow rotation implies no real distinction between seasonal and diurnal cycles. High thermal inertia,
and efficient atmospheric heat transport. Therefore no significant geographical or seasonal/diurnal
variation of temperature, except in the upper stratosphere.

8.6.3 Gas Giants

Issue of Solar vs. interior heating. Penetration depth of solar forcing. Estimates of thermal
inertia of the upper atmospheres of gas giants, in comparison to their orbital periods. Possibilities
for significant seasonal cycle on Uranus.

Extrasolar giant planets. ”Roasters”

8.6.4 Mars, present and past

The current seasonal cycle on Mars. Asymmetries between the solstices; Southern winter is much
colder than Northern winter. CO2 condensation, and the seasonal cycle of surface pressure. Sea-
sonal cycle of Ar as a diagnostic of polar condensation. The strong, deep diurnal cycle on Mars.
Factors limiting the polar night temperature drop on Mars, and relevant observations.

A survey of GCM results on the redistribution of water ice in the course of Martian Mi-
lankovic cycles

Possible long term evolutions of Marslike planets. Revisit the toy model of the interaction
between sublimation of a massive CO2 glacier and the CO2 greenhouse effect, with a seasonal cycle
included this time.
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Early Mars: Mars with a thick CO2 atmosphere, but without major oceans. Estimates for
various values of the obliquity. Can we have seasonal summertime melting? Can we form transient
or permanent CO2 glaciers?

8.6.5 Snowball Earth

A full glaciated Snowball Earth is more like Mars than like present Earth. Low thermal inertia of
surface. High albedo implies weaker solar driving, and lower temperatures imply less role of water
vapor and clouds. This section is based in part on my papers in Nature and JGR on the Snowball
Earth, and datasets from those simulations will be provided for use with the Workbook.

8.6.6 Hothouse Earth

This section deals with climates like the Cretaceous, with no permanent polar ice. A particular
emphasis is on the extreme seasonal cycle of polar continents, the moderate high latitude maritime
seasonal cycle, and the difficulty of ”getting rid of winter” in the interior of midlatitude continents.

8.6.7 Earth without a moon

This is an exercise in habitability and comparative planetology. If the Earth had no mssive moon,
its obliquity would vary over a wider range, like that of Mars. What are the consequences for
climate? For a waterworld, high obliquity actually leads to a fairly equable climate, but life on
large continents becomes very problematic.

8.6.8 Titan

Remark on the obliquity of moons: one must be careful to distinguish the obliquity relative to the
plane of the moon’s orbit from the obliquity relative to the ecliptic. This is critical in cases like
Titan, which are tide-locked to the parent planet.

Observations of Titan seasonal cycle. Expectations from thermal inertia and obliquity. Low
rotation rate and thick atmosphere means that the atmosphere can transport heat very efficiently,and
the very weak solar forcing means the atmosphere doesn’t need to transport much heat to equalize
the temperature. Upper atmospheric vs. surface solar heating. Implications of the methane and
nitrogen ”hydrological” cycles.

8.7 For Further Reading



Chapter 9

Evolution of the atmosphere

This chapter goes over some of the basics of how atmospheres change over time. The primary
attention is given to models of the long term CO2 evolution in terms of silicate weathering, after
the fashion of Walker and Kasting, and of Berner. Models of atmospheric mass loss (thermal
escape, hydrodynamic escape, solar wind sputtering and ejection due to giant collisions) are also
discussed. A very basic survey of some relevant atmospheric chemistry is also included. The focus
here would be on the interplay of methane and oxygen in Earthlike conditions, the formation of
tholin clouds on Titan and Early Earth, and the chemistry accounting for CO2 stability on Mars.
We will also talk a little bit about the methane/oxygen story and its possible role in the Early Earth
climate.

9.1 The CO2 weathering thermostat

[∗ ∗DifeqforCO2evolution] (9.1)

W

W0
= (

r

r0
)α(

p

p0
)βe

−T−T0
TU (9.2)

where W is the weathering rate [**rate of removal of CO2 from the atmosphere, in Moles per sq
m per unit time] r is the runoff rate, p is the partial pressure of CO2 in the atmosphere and T is
the global mean temperature. W0 is the weathering for the reference state with runoff r0, carbon
dioxide partial pressure p0 and temperature T0. α, β and TU are empirically determined constants.
The last of these represents the direct temperature sensitivity of the Urey reaction.

9.2 Methane and Oxygen

the oxygenation in effect takes away CO2 (to make oxygen), and
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9.3 Escape of the atmosphere to space

9.4 Other topics in chemical evolution

9.5 For Further Reading



Chapter 10

Consequences of heat transport

This chapter introduces the importance of meridional heat transport, and illustrates the qualitative
effects of heat transport using diffusive energy balance models. Energy balance models are introduced
not as a way of finding accurate solutions to climate problems, but as a way of probing general effects
of heat transport in an exploratory fashion. It provides a motivation for the (hard) fluid dynamical
issues to be taken up in Volume 2. The discussion of EBM’s somewhat follows the development in
my lecture notes from the WHOI GFD summer program. The limitations of diffusive EBM’s are
amply discussed.

Diagnosis of heat transports in the Earth atmosphere, based on ERBE data. Estimates of
effective diffusivity.

10.1 Mechanisms of heat transport

Flux of dry static energy, and flux of latent heat. Expression for fluxes in terms of correlation with
winds. General scaling arguments.

10.2 Formulation of energy balance models

The column-averaged heat budget. Representation of energy transport by a diffusion. Limitations
of the diffusive approximation. The problem of determining diffusivity. The problem of repre-
senting latent heat transport. The problem of representing tropical heat transport. Problems of
representing lapse rate, water vapor and cloud effects.

Alternate approach to formulation of a vertically integrated model: Form equations for
vertically integrated entropy (amounts to diffusing potential temperature). In this case, heating
terms show up as an entropy source and don’t integrate out in terms of the T.O.A. budget.

Models based on diffusion of moist static energy.

Representing the hydrological cycle: Is diffusing moisture a good idea? Distinction between
moisture as a radiative agent and moisture as a means of energy transport and source of precip.

Representing the tropics. Does diffusion of MSE represent the Hadley cell?
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Representation of Top-of-Atmosphere and surface fluxes. Models which track surface and
atmospheric temperature separately.

10.3 Equilibrium energy balance models

This section discusses general properties of the solutions of EBM’s in the steady case.

10.4 WTG models of the tropics

”Radiator fin” stuff. Models based on efficiency of Hadley heat transport, which allows one to aver-
age together subtropics and deep-tropics to get net energy budget for tropics, using a horizontally
uniform temperature.

10.5 The seasonal cycle revisited

Here we re-do some calculations of the seasonal cycle, this time incorporating a diffusive model of
lateral heat transport.

10.6 Ice albedo feedback

This revisits the basic ice-albedo feedback problem in the context of energy balance models. First,
the steady state problem is discussed. Then, the effect of the seasonal cycle on the bifurcation
diagram is discussed.

The related problem of the CO2 ice cap feedback on Mars is also discussed.


